FIBER: A Framework of Installation, Before
Execution-invocation, and Run-time

Optimization Layers for Auto-tuning Software*

Takahiro Katagiri'2, Kenji Kise!?, Hiroaki Honda', and Toshitsugu Yuba'

! Department of Network Science, Graduate School of Information Systems,
The University of Electro-Communications
2 PRESTO, Japan Science and Technology Corporation(JST)
1-5-1 Choufu-gaoka, Choufu-shi, Tokyo 182-8585, JAPAN
Phone: +81-424-43-5642, FAX: +81-424-43-5644
{ katagiri, kis, honda, yuba }@is.uec.ac.jp

Abstract. In this paper we propose a new paradigm, named FIBER.
The FIBER software architecture framework has three kinds of param-
eter optimization layers—installation, before execution-invocation, and
run-time, to generalize auto-tuning facilities and to obtain highly es-
timated parameters. FIBER framework also provides a loop unrolling
function, which needs code generation and parameter registration pro-
cesses, to support code development by users. The example of an eigen-
solver to apply the FIBER framework is shown. We also optimize the
eigensolver parameters using FIBER’s installation and before-execution
layers in the three kinds of parallel computers, which are the HITACHI
SR8000/MPP, Fujitsu VPP800/63, and Pentium4 PC cluster.
Keywords: Auto-tuning; Parameter optimization; Numerical library;
Performance modeling; Eigensolver;

1 Introduction

Recently, many packages of numerical computation software with auto-tuning
facility (SATF), such as PHiPAC[2], ATLAS[1,9] and FFTW]|3] have been de-
veloped. There are two reasons for this. First, the library arguments should be
reduced to make the interface easier to use. A facility is needed to maintain
high performance in all computer environments. Second, tuning work on com-
plicated machine environments, such as parallel computers, is time-consuming.
Automated adjustment facility for the parameters is thus needed.

Many SATF have been evaluated. The results indicate the facility of SATF
is very important to maintain high performance in several kinds of computer
architectures [4]. From the viewpoint of general applicability, however, the con-
ventional facility of SATF has a limitation, i.e. the auto-tuning facility uses
dedicated methods defined in each package. An example of this limitation is

* IS Technical Reports, UEC-IS-2003-3, Graduate School of Information Systems, The
University of Electro-Communications (13 May, 2003)

that several general numerical libraries contain direct solvers, iterative solvers,
dense solvers, and sparse solvers. There is no software framework, however, to
adapt SATF to these solvers.

To solve the above problem, we propose a new and general software frame-
work for SATF. The framework contains the following three component layers:

(1) Installation Optimization Layer (IOL) : This layer is called when software is
installed.

(2) Before Execution-invocation Optimization Layer (BEOL) : This layer is
called when user defined parameters are fixed (for example, problem sizes).

(3) Run-time Optimization Layer (ROL) : This layer is called at run-time to
optimize the object.

We call this new software framework FIBER (Framework of Installation, Before
Execution-invocation, and Run-time optimization layers).

2 Components and definitions of auto-tuning in FIBER

2.1 Components of FIBER

FIBER is a framework for software, which contains the following two kinds of
functions:

— Code development support function: The function performs automat-
ically code generation to grantee auto-tuning, parameterization, and its reg-
istration by specifying an instruction from users. The instruction is specified
to library or sub-routine interfaces, or other parts of the program, by using
a dedicated language.

— Three kinds of parameter optimization functions: The functions per-
form the optimizations of specified parameters in Parameter Tuning Layer
(PTL). There are three kinds of timing for the optimizations (See Figure 2.)

Figure 1 and Figure 2 show software components, and how to optimize pa-
rameters in FIBER, respectively.

The parameters in Figure 1 are added in the library, sub-routines, or other
parts of the program, described by library developers or users. One language is
used to specify the parameters. The PTL optimizes the parameters to minimize
a function. Please note that we can specify the parameters even in computer
system libraries, such as MPI (Message Passing Interface), if the interface is
open to users. PTL in FIBER, thus, can access system parameters.

There are three kinds of optimization layers to optimize the specified param-
eters in PTL : IOL, BEOL, and ROL. These layers can access a limited number
of parameters to optimize. For instance, IOL-tuned parameters can be accessed
in BEOL and ROL. BEOL-tuned parameters, however, can only be accessed by
ROL. The main reason of this is to obtain highly estimated parameters in lower
optimization layers.

Application

Library Interface

Parameter
Tuning Layer
(PTL)

Installation Optimization Layer

Before Execution Optimization Layer

Run-time Optimization Layer

User.Defined Libraries (Routines)

Parameters 1 ‘ ‘ Parameters 2

Library 1 Library 2 Library k
(Subroutine 1) (Subroutine 2) (Subroutine k)

System Defined. Libraries

‘ Parameters MPI ‘ ‘ Parameters PVM
MPI PVM
(Library Interface) (Library Interface)

‘ (Parallel) Execution Environment

Fig. 1. Software components of FIBER.

Figure 2 is a snapshot of the optimization process using the three kinds of
optimization layers in PTL.

In Figure 2, the parameters are separated into IOP (Installation Optimization
Parameters) accessed in IOL, BEOP (Before Execution-invocation Optimization
Parameters) accessed in BEOL, and ROP (Run-time Optimization Parameters)
accessed in ROL.

The optimization procedure is performed in the following order:

(1) IOL : After software installation.

(2) BEOLD After specified the special parameters, such as problem sizes, by
users.

(3) ROLO When run-time at target library, sub-routine, or other parts of the
program.

The optimized parameters in the above procedure are stored in the parameter
information file. Lower level optimization layers can access the parameters stored
in the parameter information file to perform their optimization.

2.2 The aim of auto-tuning

In this section, we present the aim of auto-tuning facility for FIBER. To under-
stand the auto-tuning facility of FIBER, a library interface for parallel eigenvalue
computation is shown.

User and System Library (Routines) Library Developer
or User Defined

Installation Optimization Parameters (IOP)

Before Execution Optimization Parameters (BEOP)

Run-time Optimization Paramerers (ROP)

Library :Parameter
Installed Information

1 |OP* File

(1) Installation Optimization Layer

Specified Parameter BEOP
Fixed
10P*
1 BEOP

(2) Before Execution Optimization Layer

OoP

Library (a routine)
called ROP| ROP| Tgeop*

1 10P*

(3) Run-time Optimization Layer

Fig. 2. Processes of the three kinds of optimization layers in FIBER.

[Example 1] A conventional parallel numerical library interface:

call PEigVecCal(

A, x, lambda, n, ... (1)
nprocs, myid, iDistInd, ... (11)
imv, iud, ihit, icomm, kbi, kort, ...(iii)
MAXITER, deps oo@v))

For this paper, the arguments in Example 1 are called as (i) Basic information
parameters, (ii) Parallel control parameters, (iii) Performance parameters, and
(iv) Algorithm parameters. For example, the dimension sizes of matrix A are
specified in the parameters of (i), data distribution information stored in the
parameters of (ii), unrolling depth or block size specified in the parameters of
(iii), and maximum iterative numbers defined in the parameters of (iv). Generally
speaking, these arguments can be removed to design a better library interface
for (ii), and to analyze numerical characteristics for (iv). The parameters of (iii),
however, cannot be removed in the conventional frameworks which do not have
the auto-tuning facility.

The aim of SATF is to maintain performance and removing the parameters
of (iii). Using SATF, the interface can be simplified as:

call PEigVecCal(A, x, lambda, n)

2.3 The definition of auto-tuning

The auto-tuning facility is described is as follows! .
Let the parameter set for all library arguments be AP. The parameter set of
(1) the basic information parameter defined in Example 1, and the set of the other
parameters except for (i), are defined as BP and OP = AP/BP, respectively.
Thus :

AP = BPUOP, (1)

Where BP N OP = ¢.
The sets of AP and BP are defined as the following;:

[Definition 1] Set AP (All Parameters)

The set of parameters for input, output, and performance is defined as AP,
for all subroutine interfaces in the library, sub-routine, or other parts of the
program. U

[Definition 2] Set BP (Basic Parameters)

The set of parameters for basic information in AP, such as matrix sizes for
input or output matrices, and target machine environments information, such as
the number of processors (PEs), is defined as BP. These parameters are specified
by users before the target libraries, sub-routines, or other parts of the program
run. O

The following assumption is made:

[Assumption 1] The execution time of the target library, sub-routine, or
other parts of the program can be estimated by using the function F', which is
derived from the set of AP. O

By Assumption 1, we obtain the execution time t for the target as

t= F(m), (2)

where m C AP.
Let the set of PP, where PP C OP be the set of (iii) performance parameters
in Example 1. Then, the PP is defined as follows.

! Similar definition was done by Naono and Yamamoto[6]. In their definition, perfor-
mance parameters are defined as CP (Critical Parameter). They defined two kinds
of CP parameters, thus, UCP (Users’ Critical Parameter) and ICP (Internal Critical
Parameter). The UCPs are parameters specified in library arguments by users, and
ICPs are parameters which do not appear library interface. The ICPs are defined in
the internal library.

[Definition 3] Set PP (Performance Parameters)

The set of parameters in OP, which can affect the whole performance of
the library, sub-routine, or other parts of the program is defined as PP, when
the set of BP is fixed. Users do not need to specify the parameters in PP, but
the performance of the library, sub-routine, or other parts of the program is
controlled by the parameters. O

Let the set of OPP be OPP = OP/PP.

Consequently,

OP = PPUOPP, (3)

where PPN OPP = ¢.
For the OOP, the following assumption is made.

[Assumption 2] The parameters in OPP do not affect the other parameters
in AP, except for the parameters in BP. O

Now (i) basic parameter of BP is fixed as | C BP, and by using Assumption
1 and 2, the execution time ¢ of target is estimated as:

t="F(,g), (4)

where g C PP.
Thus, the auto-tuning facility is defined as the following:

[Definition 4] Framework of auto-tuning facility

Auto-tuning facility is defined as the optimization procedure to minimize the
function of F for execution time, when the set of BP is fixed.

In other words, we can define the facility as the following optimization prob-
lem: Finding the set of ¢ C PP in the condition of / C BP, such that minimizing
the function of F':

mginF(Lg) = mginF'(g). O (5)

We have defined the function of F' as the execution time of the target process.

In general, there are many parameter optimization problems, such as minimiza-

tion of fee for computer use, and the size of memory spaces used. Taking into

account these problems, we enhance the definition of F. The function of F' is

the target function to minimize in the optimization process, then, we call the
function of F' as a cost definition function.

2.4 The definition of auto-tuning in FIBER

In FIBER, the set of performance parameters PP is separated as the following
three kinds of parameters:

PP =I0PUBEOP U ROP. (6)

The parameters of IOP0 BEOPOand ROP are defined as optimization param-
eters for installation, before execution-invocation, and run-time, respectively.
The definition of FIBER’s auto-tuning facility is defined as follows:

[Definition 5] FIBER’s auto-tuning facility

FIBER’s auto-tuning facility is defined as an optimization procedure to es-
timate parameter set PP fixing a part of BP in installation, before-execution,
and run-time optimization layers.

In detail, FIBER’s auto-tuning facility is a procedure to minimize the cost
definition function F', which is defined as users’ programs and instructions in the
three kinds of layers, to estimate the parameter set PP when a part of parameter
set BP is fixed in each layer. O

Definition 5 indicates that FIBER’s installation optimization is an estima-
tion procedure for PP when a part of BP, which is affected by machine envi-
ronments, is fixed. FIBER’s before-execution optimization can be explained as
an estimation procedure for PP when a part of BP, which is determined by
users’ knowledge for the target process, is fixed by using optimized parameters
in FIBER'’s installation optimization layer. For this reason, the parameters es-
timated by FIBER’s before-execution optimization have higher accuracy than
pentameters estimated by FIBER’s installation optimization. For the parameters
of BP, which can not be fixed in the two optimization layers, FIBER’s run-time
optimization layers determines their values to estimate PP at run-time.

3 Example of auto-tuning for FIBER

3.1 Specification of performance parameters by users

In FIBER framework, users can instruct detail instructions to specify the per-
formance parameters of PP and target areas of auto-tuning in their programs.
Hereafter, we call the target area as tuning region. The follows are examples.

Specification format In source program, the line of 'ABCLib$ is regarded as
FIBER’s instruction. The overall notation is figured in Figure 3.

'ABCLib$ (Auto-tuning Type) (Function Name) [(Target Variables) | region start
['ABCLib$ (Detail of Function) [sub region start |]

Tuning Region

['ABCLib$ (Detail of Function) [sub region end | |
!ABCLib$ (Auto-tuning Type) (Function Name) [(Target Variables) | region end

Fig. 3. Instruction format of auto-tuning in FIBER.

The (Auto-tuning Type) and (Function Name) in Figure 3 are called as
instruction operators. The instruction operator of (Auto-tung Type) can specify

the three kinds of timing—installation optimization (install), before execution-
invocation optimization (static), and run-time optimization (dynamic). How to
process the target code and details for auto-tuning method can be specified by
the instruction operator of (Function Name).

The typical instruction operators for function name, named as wunrolling
instruction operator (unroll) and selection instruction operator (select), are
shown in the following sections.

Example of unrolling instruction operator The following code shows an
example of unrolling instruction operator.

'ABCLib$ install unroll (j) region start
'ABCLib$ varied (j) from 1 to 16
'ABCLib$ fitting polynomial 5 sampled (1-4,8,16)
do j=0, local_length_y-1
tmpul = u_x(j)
tmprl = mu * tmpul - y_k(j)
do i=0, local_length_x-1
A(i_x+i, i_y+j) = A(d_x+i, i_y+j)
+ u_y(i)*tmprl - x_k(i)*tmpul
enddo
enddo
'ABCLib$ install unroll (j) region end

The above code shows that the loop unrolled codes for j-loop, which adapts
unrolling to the tuning region of region start —region end, are automatically
generated. The depth of the loop unrolling is also automatically parameterized
as PP. The instruction shows that installation optimization is performed for
this tuning region.

The instruction operator, which can specify detailed function for the target
instruction operator, is called as sub-instruction operator. The sub-instruction
operator of varied defines the defined area of target variables. In this example,
the defined area is {1,..,16}. For cost definition function, the types of them
can be specified by the sub-instruction operator of fitting. In this example, a
5-th order linear polynomial function is specified. The sub-instruction operator
of sampled is for definition of sampling points to estimate the cost definition
function. This example of sampling is {1-4,8,16}.

Example of selection instruction operator The following code shows an
example of selection instruction operator.

'ABCLib$ static select region start

'ABCLib$ parameter (in CacheS, in NB, in NPrc)
'ABCLib$ select sub region start

'ABCLib$ according estimated

'ABCLib$ (2.0d0*CacheS*NB) / (3.0d0*NPrc)

Target Process 1

'1ABCLib$ select sub region end

'1ABCLib$ select sub region start

'1ABCLib$ according estimated

'ABCLib$ (4.0d0*CacheS*dlog(NB))/(2.0d0*NPrc)
Target Process 2

'1ABCLib$ select sub region end

'ABCLib$ static select region end

The above code shows that the selection procedure from several tuning re-
gions, which are specified by sub region start — sub region end, is per-
formed based on the values of formulas, which are specified by the sub-instruction
operator of according estimated.

The variables referring in the formulas are defined as the sub-instruction
operator of parameter. The sub-instruction operator of in shows that the target
variables are input variables. The values of the variables should be stored in an
installation optimization layer by using the sub-instruction operator of out to
parameter information file, since this example is defined as before execution-
invocation optimization.

Please note that the selection of Target Process 1 or Target Process 2 is
parameterized as PP in this example.

3.2 Example of Installation Optimization Layer (IOL)

In this section, we adapt the auto-tuning facility of FIBER to an eigensolver.
This is implemented using the Householder-bisection-inverse iteration method
for computing all eigenvalues and eigenvectors in dense real symmetric matrices.

We define the cost definition function as the execution time for the solver.
For target parallel computers, the HITACHI SR8000/MPP at the Information
Technology Center, The University of Tokyo is used? .

Let the interface of the target library in the Householder-bisection-inverse
iteration method be the same interface as PEigVecCal, as shown in Example 1.
The main arguments of this library are shown as follows:

— PP = { imv, iud, icomm, ihit, kbi, kort }
— BP = { n, nprocs }

The library interface of PEigVecCal consists of the following four kinds of
performance parameters for PP in this library.

> The nodes of the HITACHI SR8000/MPP have 8 PEs. The theoretical maximum
performance of each node is 14.4 GFLOPS. Each node has 16 GB memory, and inter-
connection topology is three dimensional hyper-cube. Its theoretical throughput is
1.6 Gbytes/s for one-way, and 3.2 Gbytes/s for both-way. In this example, the HI-
TACHI Optimized Fortran90 V01-04 compiler specified option of -opt=4 -parallel=0
was used. For the communication library, the HITACHI optimized MPI (Message
Passing Interface) was used.

1. Hoseholder tridiagonalization routine:
PP = { imv, iud, icomm }

2. Bisection routine : PP = { kbi }

. Inverse iteration routine: PP = { kort }

4. Householder inverse transformation routine:
PP ={ihit }

w

The definition area and process in each parameter are define as:

— imv = { 1,2,...,16 } : Unrolling depth for the outer loop of a matrix-vector
product in the Householder tridiagonalization (a double nested loop, BLAS?2).

— iud ={1,2,...,16 } : Unrolling depth for the outer loop of an updating process
in the Householder tridiagonalization (a double nested loop, BLAS?2).

— kbi = { vec, non-vec } : Types of implementation in a bisection routine. vec
means a vectorized implementation, and non-vec means a non-vectorized
implementation.

— kort = { MG-S, CG-S, IRCG-S, NoOrt } : Types of algorithms in inverse
iteration routine for re-orthogonalization algorithms to calculate eigenvectors
corresponding to clustered eigenvalues.

— ihit ={ 1,2,...,16 } : Unrolling depth for the outer loop of the Householder
inverse transformation routine (a double nested loop, the kernel is classified
as BLASI.)

A set of the parameters which can optimize in IOL is

— IOP = { imv, iud, kbi, ihit }.

How to estimate parameters in IOL We can determine the parameters
when the target computer systems, such as computer hardware architecture
or compilers, are fixed, since these parameters can be affected by factors of
computer hardware information, such as the number of registers, the size of
caches, and the feature of vector processing.

The parameters are determined in the following way. First of all, the param-
eters in BP are fixed, and several points for execution time at the target process
are sampled (refined to as sampled data). The cost definition function is then
determined by using the sampled data.

[Example 2] The installation optimization of the parameter of iud in Ex-
ample 1.

Let the execution time be approximated by a linear pronominal formula. The
sampling points to estimate the best parameter for iud are { 1,2,3,4,8,16 }. For
the parameters of BP, the number of PE is fixed as 8, and the parameters of n,
which are the problem sizes sampled as { 200, 400, 800, 2000, 4000, 8000 }. The
code of tuning region, cost definition function, and sampling points are same as
the example of unrolling instruction operator in Section 3.1.

Table 1 shows the execution time at the HITACHI SR8000/MPP with the
above sampled points.

10

Table 1. The execution time of the HITACHI SR8000/MPP 8PE. [sec.]

n\iud 1 2 3 4 8 16
200 .0628 .0628 .0629 .0623 .0621 .0625
400 .1817 .1784 .1763 .1745 .1723 .1719
800 .7379 .6896 .6638 .6550 .6369 .6309
2000 7.535 6.741 6.333 6.240 6.013 5.846
4000 54.06 48.05 44.85 44.36 42.89 41.19
8000 413.2 366.5 349.2 344.1 327.6 315.5

In this experiment, the basic parameter of n is fixed to estimate the function
fn(iud) for iud, where f, (iud) is a k-th order polynomial function of f,(iud) =
ay -iud® +ay -iud* 1 + a3 -iud* =2 + - - -+ ay -iud + a4, . By using an appropriate
optimization method, we can determine the coefficients of ay, .., ag41.

Table 2 shows the average of relative errors between the execution time with
estimated parameters with k-th order cost definition functions ® and the exe-
cution time with the best parameters measuring all area of definition, in each
sampling points of the problem size n.

Table 2. Average values of relative errors between execution time of estimated pa-
rameters with linear polynomial functions and execution time of the best parameters.
(HITACHI SR8000/MPP 8PE)

0-th 1-st 2-nd 3-rd 4-th 5-th
19.2 0.51 1.73 0.87 0.82 0.23

Table 2 indicated that the 5-th order polynomial function is the best in the
viewpoint, of averaged relative error. Thus, we use the 5-th order polynomial
function as the cost deification function.

We chose the least square method to estimate the coefficients of the 5-th
oder polynomial function. Table 3 shows the determined coefficients by using
sampled data from Table 1. The least square method with the Householder QR
decomposition is used to obtain the coefficients of Table 3.

We can determine the best parameters of iud in the all definition area of {
1,2,...,16 } by using the coefficients of Table 3 in each problem size.

Figure 4 shows the overall of estimated function f,(iud) by using the coeffi-
cients of Table 3. For this optimization, the sampled problem sizes of n are not
always specified by the users at run-time. The estimated parameters in Figure 4,
hence, cannot be used in any of the cases. If users specify a different problem size

3 Tt is from 0-th to 5-th. The 0-th order shows the function returns the value of the
smallest parameters. In this case, the measured execution time of iud=1 returns for
all definition area.

11

Table 3. The coeffcients of the estimated cost definition function. (Fixed the problem
size)

fn ai as as fn as as as

f200 -2.2E-6 6.7TE-5 -6.5E-4 fooo 2.4E-3 -3.8E-3 6.4E-2
faoo -1.3E-6 4.2E-5 -4.6E-4 fs0 2.3E-3 -7.8E-3 1.8E-1
fsoo 9.6E-6 -2.3E-4 7.9E-4 fsoo 1.1E-2 -8.4E-2 8.1E-1
f2000 2.4E-4 -6.3E-3 3.5E-2 fao00 1.1E-1 -1.3E-0 8.6E-0
fa000 3.0E-3 -8.3E-2 6.1E-1 fip00 -4.9E-1 -7.7eE0 6.1E+1
fgooo -1.3E-2 5.0E-1 -7.0E40 fgooo 4.5E+1 -1.4E+2 5.1E+2

Measured Time

____ Estimated Cost

Time [sec.}-

Fig. 4. The estimation of optimized parameter of iud. (Fixed the problem sizes)

against the sampling dimensions at run-time, FIBER estimates the appropriate
values by using the coefficients of Table 3 to calculate the estimation costs for
the defined area of iud. The method of this estimation is explained as follows.

First, the costs for fixing the parameter iud can be calculated by varying the
problem sizes of n as { 200, 400, 800, 2000, 4000, 8000 }. Hence, we can obtain
the all estimation costs in the iud defined area of { 1,2,...,16 } for the problem
sizes n of { 200, 400, 800, 2000, 4000,8000 }.

Second, these estimation costs can be regarded as new sampling points. By
using the new sampling points, we can estimate the function fi,q(n) for the
number of problems. We also chose the least square method to estimate the
function fi,q4(n). Let the fi,qa(n) also be approximated by a 5-order polynomially
function of fiuq(n) = dy -n® +dy -n* +dz -n® + dy - n® + ds - n + dg.

Figure 5 shows the coefficients varied from the sampled number of n as { 200,
400, 800, 2000, 4000, 8000}.

12

O Estimated Cost
sampled dim.

— Estimated Cost

Time [sec.] .-

Fig.5. The estimation of the optimized parameter of iud. (A case that the problem
sizes are not fixed until run-time.)

Figure 5 indicates that the function f;,q(n) for n is determined in the entire
definition area { 1,2,...,16 } of iud, thus, the parameters of iud to minimize the
cost function can be determined by substituting the n at run-time.

This is the parameter optimization procedure of FIBER’s IOL.

Experiments of the effect of IOL We evaluate an effect of IOL for the
parameters of iud by using several kinds of machine environments. The details
of machine environments are summarized as the follows.

— HITACHI SR8000/MPP
e System configuration and compiler: Explained in Section 3.2.
— Fujitsu VPP800/63
e System configuration: This machine is a vector-parallel style super-computer.
The Fujitsu VPP800/63 at the Academic Center for Computing and Me-
dia Studies, Kyoto University is used. The total number of nodes for the
VPP800 is 63 nodes. The theoretical maximum performance of each node
is 8 GFLOPS for vector processing, and 1 GOPS for scalar processing.
Each node has 8 GB memory, and inter-connection topology is a cross
bar. Its theoretical throughput is 3.2 Gbytes/s. For the communication
library, the Fujitsu optimized MPI was used.
e Compiler : The Fujitsu optimized UXP/V Fortran/VPP V20L20 com-
piler specified option of -O5 -X9 was used.
— PC Cluster
e System configuration: As a node of PC cluster, the Intel Pentium4 2.0GHz
is used. The number of PEs for the PC cluster is 4, and each node has

13

1GB (Direct RDRAM/ECC 256MB*4) memory. The system hardware
board is the ASUSTek P4T-E4+A (Socket478). The network card is the
Intel EtherExpressProl00+. The Linux 2.4.9-34 and MPICH 1.2.1 are
used as the operating system and communication library.

e Compiler :

was used.

The PGI Fortran90 4.0-2 compiler specified option of -fast

[Experiment 1] We evaluate the estimated errors in IOL. Figure 4 shows
the estimated errors and relative errors in the sampled points of iud.

Table 4. Estimated and relative errors for the sampled points in IOL with 5-th order
polynomial cost definition function.

(a) HITACHI SR8000/MPP (1Node, S8PEs)

Sampled Estimated Param.l Estimated Best Param.

Rel. Err

Dim. (Exe.T. ET[Sec]) Error (Exe.T. BT[Sec]) (ET — BT)/BT 100
200 14 (5.905E-2) 8.749E-18 6 (5.867E-2) 0.64 %
400 14 (0.1665) 1.410E-16 14 (0.1665) 0%
800 14 (0.6198) 1.167E-15 14 (0.6198) 0%
2000 14 (5.833) 9.125E-14 16 (5.824) 0.15 %
4000 14 (41.22) 7.251B-12 15 (41.00) 0.54 %
8000 13 (314.6) 4.362E-10 15 (314.4) 0.04 %
(b) Fujitsu VPP800/63 (8PEs)
Sampled Estimated Param.l Estimated Best Param. Rel. Err

Dim. (Exe.T. ET[Sec]) Error (Exe.T. BT[Sec]) (ET — BT)/BT *100
200 7 (3.073E-2) 2.283E-18 2 (3.058E-2) 0.49 %
400 7 (6.558E-2) 5.277E-17 5 (6.530E-2) 0.44 %
800 7 (0.1521) 1.456E-16 10 (0.1515) 0.40 %
2000 5 (0.6647) 2.175E-15 4 (0.6644) 0.04 %
4000 6 (3.418) 2.414E-14 2 (3.203) 6.7 %
8000 7 (23.06) 1.412E-12 4 (22.40) 2.9 %
(c) PC Cluster (4PEs)
Sampled Estimated Param.l Estimated Best Param. Rel. Err
Dim. (Exe.T. ET[Sec]) Error (Exe.T. BT[Sec]) (ET — BT)/BT * 100
200 7 (0.2786) 1.391E-16 13 (0.2345) 18.8 %
400 6 (2.149) 3.079E-15 4 (0.6739) 218 %
800 6 (5.603) 6.102E-14 14 (2.7176) 106 %
2000 6 (20.38) 1.533E-12 2 (15.89) 283 %
4000 6 (106.5) 6.107E-11 2 (88.96) 19.7 %
8000 2 (583.2) 1.901E-9 2 (583.2) 0%

14

The estimated errors in Figure 4 were calculated by the sum of power of
subtraction for the measured time and the estimated time for the sampled points.
The relative errors in Figure 4 were calculated by using the execution time for
estimated parameters and the execution time for best parameters.

Figure 4 indicated that the relative errors in PC cluster are huge compared
to the other errors in super computers. The main reason is that the fluctuation
for the execution time was observed in PC cluster. The estimation of parameter,
hence, is sensitive compared to the case of super computers.

3.3 Example of Before Execution-invocation Optimization Layer

(BEOL)

In FIBER, the optimization of BEOL is performed when the parameters in BP
are specified before executing the target process. This section explains several
adoptions for this layer.

[Situation 1] In Example 1, the users know the number of processors (=8
PEs), and matrix sizes (=8192) for the eigenvalue computation. (n = 8192,
nprocs = 8)

In Situation 1, the parameters to optimize in BEOL are

— BEOP = { imv, iud, ihit, kbi }.

Please note that the IOL uses the totally estimated parameters or estimated
parameters using the user-specified sampled data. In BEOP, however, users know
the number of problems n, and specify the value to inform the FIBER optimiza-
tion system. Hence, the accuracy of parameter estimated in BEOP is better than
that of IOP.

BEOP can be used in processes which need highly estimated parameters.

Experiments of the effect of BEOL We evaluate FIBER’s BEOL by using
the three kinds of parallel computers. Firstly, we will evaluate the following
Experiment 2.

[Experiment 2] Evaluate the case that users can know the problem sizes
to execute the library. The sizes are 123, 1234, and 9012.

Figure 5 shows that the execution time of FIBER’s IOL-estimated parameters
with the sampling points of iud (Est.Param.l), the execution time of FIBER’s
IOL-estimated parameters with all definition area points (Est.Param.2), and the
execution time of FIBER’s BEOL-estimated parameters (Best Param.).

The results of Figure 5 indicated that (1) modifying sampling points makes
better estimated accuracy; (2) FIBER’s BEOL has 0.5% — 28.7% effectiveness
compared to FIBER’s IOL;

Let’s consider the following Situation 2.

[Situation 2] Users know the matrix coefficients are not changed in the
invocations.
In Situation 2, the parameters for BEOP can be defined as

15

Table 5. Effect of optimization in BEOL and sampling points.

(a) HITACHI SR8000/MPP (1Node, 8PEs)
Specified Est.Param.1 Est.Param.2 Best Param. Rel.Errl Rel.Err2
Dim. (Exe.T.ET1[Sec]) (Exe.T.ET2[Sec]) (BEOL Opt.Res., (ET1 — BT) (ET2 — BT)
Exe.T.BT[Sec]) /BT %100 /BT %100

123 14 (0.0333) 11 (0.0341) 6 (0.0333) 0.00 % 24 %
1234 14 (1.668) 16 (1.662) 16 (1.662) 0.36 % 0%
9012 16 (440.6) 12 (447.0) 16 (440.6) 0% 14 %

(b) Fujitsu VPP800/63 (8PEs)
Specified Est.Param.1 Est.Param.2 Best Param. Rel.Errl Rel.Err2
Dim. (Exe.T.ET1[Sec]) (Exe.T.ET2[Sec]) (BEOL Opt.Res., (ET1 — BT) (ET2 — BT)
Exe.T.BT[Sec]) /BT %100 /BT %100

123 7 (0.0183) 1 (0.0182) 10 (0.0181) 1% 05 %
1234 6 (0.2870) 6 (0.2870) 4 (0.2847) 0.8 % 08 %
9012 14 (34.67) 16 (34.29) 4 (32.03) 8.2 % 8.2 %

(c) PC Cluster (4PEs)
Specified Est.Param.1 Est.Param.2 Best Param. Rel.Errl Rel.Err2
Dim. (Exe.T.ET1[Sec]) (Exe.T.ET2[Sec]) (BEOL Opt.Res., (ET1 — BT) (ET2 — BT)
Exe.T.BT[Sec]) /BT %100 /BT %100

123 14 (0.1286) 4 (0.1285) 10 (0.1269) 13% 12%
1234 6 (7.838) 5 (6.2835) 10 (6.090) 28.7 % 31 %
9012 6 (973.6) 1 (867.0) 2 (845.6) 15.1 % 2.5 %

— BEOP = { imv, iud, ihit, kbi, kort }.

In Situation 2, the process of re-orthogonalization in the inverse iteration method
can be optimized.

[Experiment 3] Let the users know the information that target matrix
coefficients are not changed same as Situation 2. In this situation, evaluate the
effect of FIBER’s BEOL for the parameter of kort.

The following is the example of BEOL optimization, where a user wants to
solve the eigenvalues and eigenvectors of a Frank matrix order 10,000 by using the
HITACHI SR8000/MPP. Table 6 and Table 7 show the results for the execution
time and accuracy of the eigenvector with the different parameters of kort.

Table 6 shows that the execution time was different according to re-orthogonalization
methods in the Frank matrix. With taking account of numerical stability, the
MG-S method is selected as a de facto parameter in several libraries.

If users can specify the accuracy of eigenvectors in this situation, i.e. less
1.5FE—12, the system can determine the suitable re-orthogonalization method. In
this case, CG-S was the best parameter. Consequently, the BEOL can determine
the parameter of kort as CG-S in this situation using the value of accuracy from

16

Table 6. Execution time of each re-orthogonalization method in inverse iteration
method. (HITACHI SR8000/MPP, n = 10,000) The unit is second. The notation
of > means the iteration was not converged in a limitation for execution in the super-
computer environments.

#PEs |CG-S|MG-S|IRCG-S[NoOrt
(nprocs)
8 6,604|38,854| 12,883 | 23

16 3,646(24,398| 6,987 12
32 2,06128,050{ 3,906 7
64 1,633(27,960| 3,059 3
128 (2,091 > 3,978 1

Table 7. The accuracy of eigenvectors calculated with each re-orthogonalization
method in inverse iteration method. (HITACHI SR8000/MPP, n = 10,000) The unit
is the norm of Frobenius.

#PEs | CG-S | MG-S |IRCG-S|NoOrt
(nprocs)
8 6.4E-13(6.6E-13|6.4E-13| 1.4

16 6.6E-13(6.6E-13|6.6E-13| 1.4

32 6.8E-13|6.6E-13|6.8E-13| 1.4
64 9.4E-13(6.6E-13|9.4E-13| 1.4
128 |1.5E-12 - 1.5E-12| 1.4

users. The accuracy of eigenvectors and the code of algorithm selection in the re-
orthogonalization methods can be implemented by using the selection instruction
operation in Section 3.1.

Figure 8 shows the speedup ratio compared to the case of normal default
parameter (the MG-S method) in Situation 2. Figure 8 indicated that we can

Table 8. Speedup ratio to specified the normal default parameter of MG-S method,
when users specify the accuracy of eigenvectors as less 1.5F — 12 in Situation 2. (HI-
TACHI SR8000/MPP)

#PEs (nprocs) 8 16 32 64 128
Speedup 5.8 6.6 13.6 17.1 -

obtain 5.8%-17.1% speedups in this case. This is a typical case to apply the
BEOL optimization in FIBER.

This speedup is crucial, hence, we can conclude that FIBER’s BEOL is an
important function to optimize algorithms according to user’s knowledge.

17

3.4 Example of Run-time Optimization Layer (ROL)
For Example 1, the ROP (Run-time Optimization Parameters) in ROL is
— IOP = { kort }.

In this situation, the size of the matrix and the characteristics of the matrix
inputed are not fixed. The suitable re-orthogonalization method depends on
user specified conditions and the characteristics of the matrix at run-time.

One approach for the optimization of ROL is the following. In BEOL, the
history of suitable parameters for kort is stored. Next at run-time, the history is
used to determine the parameters of kort. For example, the most often selected
parameter is chosen in ROL. If the parameter does not satisfy the user specified
accuracy, the most stable method, such as MG-S, is selected. This implementa-
tion, of course, has an overhead to re-try the computation. But the specification
of the parameter kort is true, and the execution time can be shortened.

Almost all sparse solvers can apply the ROL optimization. This is because,
the best algorithm depends on the location of a non-zero value of the inputed
matrix. The location is defined at run-time. For example, the block sizes in a
block algorithm for sparse solvers are determined by the location of non-zero
elements for the target matrix.

4 Related work

There are two kinds of paradigms for auto-tuning software.

The first paradigm is a computer system software. For tuning computer sys-
tem parameters, such as IO buffer size, Active Harmony|[8] and Autopilot[7] are
known.

The second paradigm is a numerical library. PHIPAC[2]0 ATLAS and the
paradigm of AEOS (Automated Empirical Optimization of Software)[1,9], and
FFTW]I3] can automatically tune the performance parameters of their routines
when they are installed. In ILIB[4,5], the facility of installation and run-time
optimization is implemented. However, the concepts of (1) execution-invocation
optimization layer to estimate PP fixing parameters of BP from usrs’ knowledge,
and (2) the FIBER’s parameter reference procedure, to improve parameter ac-
curacy and to generalize auto-tuning facilities, are not clear and rarely discussed
in these libraries. We therefore believe that these two characteristics for FIBER
are quite new concepts.

For formalization of an auto-tuning facility, Naono and Yamamoto formu-
lated the installation optimization in the SIMPL[6] auto-tuning software frame-
work, which is a paradigm for parallel numerical libraries.

5 Conclusion

In this paper, the authors propose a new framework for auto-tuning software,
named FIBER. FIBER has three kinds of parameter optimization layers — in-
stallation, execution-invocation, and run-time optimization, to generalize auto-
tuning facilities and to improve parameter accuracy. The key point of the FIBER

18

framework is how to determine the cost definition function of F' according to the
characteristics of libraries, sub-routines, or other parts of the program.

The authors evaluate the cost definition function of F' with a linear polyno-
mial function. Arbitrary processes, however, cannot estimate their costs by using
the function. To extend the adaption of auto-tuning and to obtain high quality
estimated parameters, more sophisticated methods to estimate parameters are
needed. An important task for us in the future is to evaluate these methods.

The authors have developed a parallel eigensolver, named ABCLibDRSSED,
which contains a part of FIBER’s functions. The source code and manual for
the version alpha of ABCLibDRSSED are open to public through the following
WWW page: http://www.abc-1ib.org/.

The authors also have a plan to develop a language, named ABCLibScript. It
supports code generation, parameterization, and its registration for auto-tuning
facilities based on the FIBER’s concept, which are shown in Section 3.1.

Acknowledgments

The authors would like to thank to Associate Professor Reiji Suda at the Uni-
versity of Tokyo, for giving us useful comments and discussions for FIBER. This
study was partially supported by PRESTO, Japan Science and Technology co-
operation (JST).

References

1. Atlas project; http://www.netlib.org/atlas/index.html.

2. J. Bilmes, K. Asanovié¢, C.-W. Chin, and J. Demmel. Optimizing matrix multiply
using phipac: a portable, high-performance, ansi ¢ coding methodology. Proceedings
of International Conference on Supercomputing 97, pages 340-347, 1997.

3. M. Frigo. A fast fourier transform compiler. In Proceedings of the 1999 ACM SIG-
PLAN Conference on Programming Language Design and Implementation, pages
169-180, Atlanta, Georgia, May 1999.

4. T. Katagiri, H. Kuroda, K. Ohsawa, M. Kudoh, and Y. Kanada. Impact of auto-
tuning facilities for parallel numerical library. IPSJ Transaction on High Perfor-
mance Computing Systems, 42(SIG 12 (HPS 4)):60-76, 2001.

5. H. Kuroda, T. Katagiri, and Y. Kanada. Knowledge discovery in auto-tuning par-
allel numerical library. Progress in Discovery Science, Final Report of the Japanese
Discovery Science Project, Lecture Notes in Computer Science, 2281:628-639, 2002.

6. K. Naono and Y. Yamamoto. A framework for development of the library for
massively parallel processors with auto-tuning function and with the single memory
interface. IPSJ SIG Notes, (2001-HPC-87):25-30, 2001.

7. R. L. Ribler, H. Simitci, and D. A. Reed. The autopilot performance-directed
adaptive control system. Future Generation Computer Systems, special issue (Per-
formance Data Mining), 18(1):175-187, 2001.

8. C. Tapus, I.-H. Chung, and J. K. Hollingsworth. Active harmony : Towards au-
tomated performance tuning. In Proceedings of High Performance Networking and
Computing (SC2002), Baltimore, USA, November 2003.

9. R. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimizations of
software and the atlas project. Parallel Computing, 27:3-35, 2001.

19

