
Parallelization of Fully Distributed
dense Matrix-Matrix Multiplication

(1)
名古屋大学情報基盤中心 教授 片桐孝洋

Takahiro Katagiri, Professor,
Information Technology Center, Nagoya University

Introduction to Parallel Programming for
Multicore/Manycore Clusters

1

台大数学科学中心 科学計算冬季学校

Lessons for Parallelization of
Matrix-Matrix Multiplications

Lesson 1
 This lesson.
 Easy to parallelize. It needs 30 minutes or so.
 No communication is needed.

Lesson 2
 Next lesson.
 Medium level. It needs one hour or so.
 1-to-1 communications are used.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

2

What is matrix-matrix
multiplication?

The basic operation that can improve performance
by code optimization.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

3

Dense Matrix-Matrix Multiplication
 A dense matrix-matrix multiplication C = A B is utilizing a

benchmark for compilers and computer systems.
 Reason 1: Big impact of performance depends on

implementations.
 Reason 2: Easy to understand. It can also implement codes easily.
 Reason 3: It represents characteristics of scientific and

technology computations.
1. There is a large <continuous> loop.
2. It accesses <big data> without cache memory in simple

implementation.
3. If 2, it is memory intensive computation, which accesses

memory frequently.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

4

A Simple Implementation (C Language)
An implementation:

for (i=0; i<n; i++)
for (j=0; j<n; j++)

for (k=0; k<n; k++)
C[i][j] += A[i][k] *B[k][j];

Introduction to Parallel Programming for
Multicore/Manycore Clusters

5

C A B
i

j

i

k

k

j

Optimization Methods for
Matrix-matrix Multiplication (MMM)
 A Matrix-matrix multiplication:

can be optimized by the followings:
1. Loop Exchange Method:
 Exchange 3-nested loops of MMM to perform

continuous access.
2. Blocking (Tiling) Method:
 Implement codes to reuse of data in a partial part

of matrices in cache memory.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

6

)...,,2,1,(
1

njibac
n

k
kjikij

Loop Exchange Method (C Language)
 The loop of MMM forms the following 3-nested loop:

for(i=0; i<n; i++) {
for(j=0; j<n; j++) {

for(k=0; k<n; k++) {
c[i][j] = c[i][j] + a[i][k] * b[k][j];

}
}

}

 Although we exchange the outer loops, result of
computation is not changed with respect to inner
computation.
→ Hence we have 6 ways to exchange the loop.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

7

Loop Exchange Method
(Fortran Language)
 The loop of MMM forms the following 3-nested loop:

do i=1, n
do j=1, n

do k=1, n
c(i , j) = c(i, j) + a(i , k) * b(k , j)

enddo
enddo

enddo

 If we exchange the outer loops, results of computation
do not change with respect to inner computation.
→ Hence we have 6 ways to exchange the loop.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

8

Classification of MMM
 There are three classifications for MMM according to

memory access pattern.
1. Inner-product form

It is same as <dot products of vectors> for access
pattern of the inner computation.

2. Outer-product form
It is same as <outer products of vectors> for access
pattern of the inner products.

3. Middle-product form
It is hybrid form between inner-product and outer-
product forms.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

9

The inner-product form of MMM
(C Language)

 Inner-product form
 Implementation with ijk, jik loops as follows:
 for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
dc = 0.0;
for (k=0; k<n; k++){

dc = dc + A[i][k] * B[k][j];
}
C[i][j]= dc;

}
}

Introduction to Parallel Programming for
Multicore/Manycore Clusters

10

A B

….

* With accesses for row-size and
column-wise:

→ Performance goes down
between languages that provide
row-wise and column-wise
allocations.
One of solutions：

Transpose array for A or B.

*Here after, we denote implementation with order
of loop induction variables from the outer loop.
For example, the above code is <ijk loop>.

The inner-product form of MMM
(Fortran Language)
 Inner-product form
 Implementation with ijk, jik loops as follows:
 do i=1, n

do j=1, n
dc = 0.0d0
do k=1, n

dc = dc + A(i , k) * B(k , j)
enddo
C(i , j) = dc

enddo
enddo

Introduction to Parallel Programming for
Multicore/Manycore Clusters

11

A B

….

* With accesses for row-size and
column-wise:

→ Performance goes down
between languages that provide
row-wise and column-wise
allocations.
One of solutions：

Transpose array for A or B.

*Here after, we denote implementation with order
of loop induction variables from the outer loop.
For example, the above code is <ijk loop>.

The outer-product form of MMM
(C Language)
 Outer-product form
 Implementation with kij, kji loops as follows:
 for (i=0; i<n; i++) {

for (j=0; j<n; j++) {
C[i][j] = 0.0;

}
}
for (k=0; k<n; k++) {

for (j=0; j<n; j++) {
db = B[k][j];
for (i=0; i<n; i++) {
C[i][j]= C[i][j]+ A[i][k]* db;

}
}

} Introduction to Parallel Programming for
Multicore/Manycore Clusters

12

A B

* In kji loop, main access
direction is column-wise.
→ It is good for language
that provides column-wise
array allocation.
(Fortran)

….

The outer-product form of MMM
(Fortran Language)
 Outer-product form
 Implementation with kij, kji loops as follows:
 do i=1, n

do j=1, n
C(i , j) = 0.0d0

enddo
enddo
do k=1, n

do j=1, n
db = B(k , j)
do i=1, n

C(i , j) = C(i , j)+ A(i , k) * db
enddo

enddo
enddo Introduction to Parallel Programming for

Multicore/Manycore Clusters
13

A B
….

* In kji loop, main access
direction is column-wise.
→ It is good for language
that provides colmn-wise
array allocation.
(Fortran)

The middle-product form of MMM
(C Language)
 Middle-product form
 Implementation with ikj, jki loops as follows:
 for (j=0; j<n; j++) {

for (i=0; i<n; i++) {
C[i][j] = 0.0;

}
for (k=0; k<n; k++) {
db = B[k][j];
for (i=0; i<n; i++) {
C[i][j] = C[i][j] + A[i][k] * db;

}
}

}

Introduction to Parallel Programming for
Multicore/Manycore Clusters

14

A B

* In jki loop, all access
directions are column-wise.

→ It is the best for
language that provides
column-wise array
allocation. (Fortran)

.

.

The middle-product form of MMM
(Fortran Language)
 Middle-product form
 Implementation with ikj, jki loops as follows:
 do j=1, n

do i=1, n
C(i , j) = 0.0d0

enddo
do k=1, n
db = B(k , j)
do i=1, n

C(i , j) = C(i , j) + A(i , k) * db
enddo

enddo
enddo

Introduction to Parallel Programming for
Multicore/Manycore Clusters

15

A B

.

.

* In jki loop, all access
directions are column-wise.

→ It is the best for
language that provides
column-wise array
allocation. (Fortran)

Execution of sample program
(Dense matrix-matrix multiplication)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

32

Note: sample program of
dense matrix-matrix multiplication
 Common file name of C/Fortran languages:

Mat-Mat-fx.tar
 Modify queue name from lecture to lecture7 in

job script file mat-mat.bash. Then type “pjsub”.
 lecture : Queue in out of time of this lecture.
 lecture7 Queue in time of this lecture.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

33

Execute sample program of
dense matrix-matrix multiplication
 Type followings in command line:

$ cp /home/z30082/Mat-Mat-fx.tar ./
$ tar xvf Mat-Mat-fx.tar
$ cd Mat-Mat

 Choose the follows:
$ cd C : For C language.
$ cd F : For Fortran language.

 The follows are common:
$ make
$ pjsub mat-mat.bash

 After finishing the job, type the follow:
$ cat mat-mat.bash.oXXXXXX

Introduction to Parallel Programming for
Multicore/Manycore Clusters

34

Output of sample program of dense
matrix-matrix multiplication (C Language)
 If the run is successfully ended, you can see the follows:
N = 1000
Mat-Mat time = 0.209609 [sec.]
9541.570931 [MFLOPS]
OK!

Introduction to Parallel Programming for
Multicore/Manycore Clusters

35

It is established 9.5GＦＬOPS with one core.

Output of sample program of dense matrix-
matrix multiplication (Fortran Language)
 If the run is successfully ended, you can see the follows:
NN = 1000
Mat-Mat time[sec.] = 0.2047346729959827
MFLOPS = 9768.741003580422
OK!

Introduction to Parallel Programming for
Multicore/Manycore Clusters

36

It is established 9.7GＦＬOPS with one core.

Explanation of sample program
(C Language)
 You can change size of matrix by the number:

#define N 1000

 By setting 1 in the follow “0”, result of matrix-
matrix multiplication is verified:
#define DEBUG 0

 Specification of MyMatMat function
 Return result of A times B with size of [N][N] of
double by setting C with size of [Ｎ][Ｎ] of double.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

37

Explanation of sample program
(Fortran Language)
 You can find declaration of size of dimension N

in the following file:
mat-mat.inc

 Variable of the size of dimension is NN, such
as:
integer NN
parameter (NN=1000)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

38

Homework 4
 Parallelize MyMatMat function.

You can use the following parameter for
debugging.
 #define N 192
 #define DEBUG 1

 Whole elements of matrices A, B, and C, that
are size of Ｎ×Ｎ, can be allocated in each PE
redundantly. (c.f. Strategy of parallelization)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

39

Note: Parallelization
 In this sample program, we use a test matrix

with that all elements are set to “1” for A and
B. Then we compare theoretical result, that is:
all elements of C are N. Please use function of
verification for your debug.
Note:
You need also parallelization for the
verification routine.
(c.f. Sample program of matrix-vector multiplication.)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

40

Hints of parallelization
 Use the following data distribution to do easy implementation:

 No communication is needed.
 It can be parallelized as same as matrix-vector multiplication.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

41

PE0

PE2

PE１

PE3

PE0
PE１＝ ＊

Ｃ Ａ Ｂ

Ｎ/4

N

PE0

PE2

PE１

PE3

Ｎ/4

N

PE2
PE3

All elements are
allocated redundantly
in each PE.

192 parallelism
can be used in
this lecture.

Confirmation: Allocation of array in
viewpoint of each PE
 Use “partial” part of arrays in each PE

although it allocates whole of size of arrays [N][N].

Introduction to Parallel Programming for
Multicore/Manycore Clusters

42

PE0

ＡＮ/4

N

PE１

Ａ

N

PE2

Ａ

N

PE3

Ａ

N

PE0 PE１ PE２ PE３

Note: performance issue by
implementation
 If you use global variables for loop induction variables,

you may obtain poor performance.
 Use it by local variables, or literal values, such as 100.

 for (i=i_start; i<i_end; i++) {
…
…

}

Introduction to Parallel Programming for
Multicore/Manycore Clusters

43

Use local variables

Homework and Lessons
1. [Homework4] Parallelize sample code of

dense matrix-matrix multiplication. You can
use redundant allocation of arrays for matrix A,
B, and C for initial data distribution.

2. Make a hybrid MPI/OpenMP code, then
evaluate its performance by using several
executions with respect to MPI processes and
OpenMP threads in environments of lecture.
Find condition that pure MPI is the fastest by
using results of the evaluation.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

44

