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Lessons for Parallelization of 
Matrix-Matrix Multiplications

Lesson 1
 This lesson.
 Easy to parallelize. It needs 30 minutes or so.
 No communication is needed.

Lesson 2
 Next lesson.
 Medium level. It needs one hour or so.
 1-to-1 communications are used.
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What is matrix-matrix 
multiplication? 

The basic operation that can improve performance 
by code optimization.
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Dense Matrix-Matrix Multiplication
 A dense matrix-matrix multiplication C = A B is utilizing  a 

benchmark for compilers and computer systems.
 Reason 1: Big impact of performance depends on 

implementations. 
 Reason 2: Easy to understand. It can also implement codes easily. 
 Reason 3: It represents characteristics of scientific and 

technology computations.
1. There is a large <continuous> loop.
2. It accesses <big data> without cache memory in simple 

implementation. 
3. If 2, it is memory intensive computation, which accesses 

memory frequently.  
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A Simple Implementation (C Language) 
An implementation: 

for (i=0; i<n;  i++) 
for (j=0; j<n; j++) 

for (k=0; k<n; k++) 
C[i][j] += A[i][k] *B[k][j];
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Optimization Methods for 
Matrix-matrix Multiplication (MMM)
 A Matrix-matrix multiplication:

can be optimized by the followings:
1. Loop Exchange Method: 
 Exchange 3-nested loops of MMM to perform 

continuous access. 
2. Blocking (Tiling) Method: 
 Implement codes to reuse of data in a partial part 

of matrices in cache memory. 
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Loop Exchange Method (C Language)
 The loop of MMM forms the following 3-nested loop:

for(i=0;  i<n;  i++)  {
for(j=0;  j<n;  j++)  {

for(k=0; k<n; k++)  {
c[ i ][ j ] = c[ i ][ j ] + a[ i ][ k ] * b[ k][ j ];

}
}

}

 Although we exchange the outer loops, result of 
computation is not changed with respect to inner 
computation. 
→ Hence we have 6 ways to exchange the loop.

Introduction to Parallel Programming for 
Multicore/Manycore Clusters

7



Loop Exchange Method 
(Fortran Language)
 The loop of MMM forms the following 3-nested loop:

do i=1,  n
do j=1,  n

do k=1,  n
c( i ,  j ) = c( i,  j) + a( i , k ) * b( k ,  j )

enddo
enddo

enddo

 If we exchange the outer loops, results of computation 
do not change with respect to inner computation. 
→ Hence we have 6 ways to exchange the loop.
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Classification of MMM
 There are three classifications for MMM according to 

memory access pattern.
1. Inner-product form

It is same as <dot products of vectors> for access 
pattern of the inner computation. 

2. Outer-product form
It is same as <outer products of vectors> for access 
pattern of the inner products. 

3. Middle-product form
It is hybrid form between inner-product and outer-
product forms.
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The inner-product form of MMM 
(C Language)

 Inner-product form
 Implementation with ijk, jik loops as follows:
 for (i=0;  i<n;  i++) {

for (j=0;  j<n;  j++) {
dc = 0.0;
for (k=0;  k<n;  k++){

dc = dc + A[ i ][ k ] * B[ k ][ j ];
}
C[ i ][ j ]= dc;

} 
}
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* With accesses for row-size and 
column-wise: 

→ Performance goes down 
between languages that provide 
row-wise and column-wise 
allocations. 
One of solutions：

Transpose array for A or B.    

*Here after, we denote implementation with order 
of loop induction variables from the outer loop. 
For example, the above code is <ijk loop>.



The inner-product form of MMM 
(Fortran Language)
 Inner-product form
 Implementation with ijk, jik loops as follows:
 do i=1,  n

do j=1, n
dc = 0.0d0
do k=1, n

dc = dc + A( i , k ) * B( k , j )
enddo
C( i , j ) = dc

enddo
enddo
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The outer-product form of MMM 
(C Language)
 Outer-product form
 Implementation with kij, kji loops as follows:
 for (i=0;  i<n;  i++) {

for (j=0;  j<n;  j++) {
C[ i ][ j ] = 0.0;  

} 
}
for (k=0;  k<n;  k++) {

for (j=0;  j<n;  j++) {
db = B[ k ][ j ];
for (i=0;  i<n;  i++) {
C[ i ][ j ]= C[ i ][ j ]+ A[ i ][ k ]* db;

}
}
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array allocation. 
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The outer-product form of MMM 
(Fortran Language)
 Outer-product form
 Implementation with kij, kji loops as follows:
 do i=1,  n

do j=1,  n
C( i , j ) = 0.0d0 

enddo
enddo
do k=1,  n

do j=1,  n
db = B( k ,  j )
do i=1,  n

C( i , j ) = C( i , j )+ A( i , k ) * db
enddo

enddo
enddo Introduction to Parallel Programming for 
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The middle-product form of MMM 
(C Language)
 Middle-product form
 Implementation with ikj, jki loops as follows:
 for (j=0;  j<n;  j++)  {

for (i=0;  i<n;  i++) {
C[ i ][ j ] = 0.0; 

}
for (k=0;  k<n;  k++) {
db = B[ k ][ j ];
for (i=0;  i<n;  i++) {
C[ i ][ j ] = C[ i ][ j ] + A[ i ][ k ] * db;

}
}

}
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The middle-product form of MMM 
(Fortran Language)
 Middle-product form
 Implementation with ikj, jki loops as follows:
 do j=1,  n

do i=1,  n
C( i , j ) = 0.0d0

enddo
do k=1,  n
db = B( k ,  j )
do i=1,  n

C( i , j ) = C( i , j ) + A( i , k ) * db
enddo

enddo
enddo
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* In jki loop, all access 
directions are column-wise.

→ It is the best for 
language that provides
column-wise array
allocation. (Fortran)



Execution of sample program
(Dense matrix-matrix multiplication)
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Note: sample program of 
dense matrix-matrix multiplication 
 Common file name of C/Fortran languages:

Mat-Mat-fx.tar 
 Modify queue name from lecture to lecture7 in 

job script file mat-mat.bash. Then type “pjsub”.
 lecture : Queue in out of time of this lecture.
 lecture7 Queue in time of this lecture.
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Execute sample program of 
dense matrix-matrix multiplication
 Type followings in command line:

$  cp  /home/z30082/Mat-Mat-fx.tar  ./
$  tar  xvf Mat-Mat-fx.tar
$  cd  Mat-Mat

 Choose the follows:
$  cd  C : For C language.
$  cd  F : For Fortran language. 

 The follows are common:
$  make
$  pjsub mat-mat.bash

 After finishing the job, type the follow:
$  cat mat-mat.bash.oXXXXXX
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Output of sample program of dense 
matrix-matrix multiplication (C Language)
 If the run is successfully ended, you can see the follows:
N  = 1000
Mat-Mat time  = 0.209609 [sec.]
9541.570931 [MFLOPS]
OK!

Introduction to Parallel Programming for 
Multicore/Manycore Clusters

35

It is established 9.5GＦＬOPS with one core.



Output of sample program of dense matrix-
matrix multiplication (Fortran Language)
 If the run is successfully ended, you can see the follows:
NN  =  1000
Mat-Mat time[sec.] =  0.2047346729959827
MFLOPS =  9768.741003580422
OK!
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Explanation of sample program 
(C Language)
 You can change size of matrix by the number:

#define  N      1000

 By setting 1 in the follow “0”, result of matrix-
matrix multiplication is verified:
#define  DEBUG  0

 Specification of MyMatMat function
 Return result of A times B with size of [N][N]  of 
double by setting C with size of [Ｎ][Ｎ] of double.
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Explanation of sample program 
(Fortran Language)
 You can find declaration of size of dimension N 

in the following file:
mat-mat.inc

 Variable of the size of dimension is NN, such 
as:   
integer  NN
parameter (NN=1000)
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Homework 4
 Parallelize MyMatMat function. 

You can use the following parameter for 
debugging. 
 #define  N      192
 #define  DEBUG  1

 Whole elements of matrices A, B, and C, that 
are size of Ｎ×Ｎ, can be allocated in each PE 
redundantly. (c.f. Strategy of parallelization)
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Note: Parallelization
 In this sample program, we use a test matrix 

with that all elements are set to “1” for A and 
B. Then we compare theoretical result, that is: 
all elements of C are N. Please use function of 
verification for your debug.     
Note: 
You need also parallelization for the 
verification routine.
(c.f. Sample program of matrix-vector multiplication.)
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Hints of parallelization
 Use the following data distribution to do easy implementation:

 No communication is needed.
 It can be parallelized as same as matrix-vector multiplication.
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Confirmation: Allocation of array in 
viewpoint of each PE
 Use “partial” part of arrays in each PE

although it allocates whole of size of arrays [N][N].
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Note: performance issue by 
implementation
 If you use global variables for loop induction variables, 

you may obtain poor performance.  
 Use it by local variables, or literal values, such as 100.

 for (i=i_start;  i<i_end;  i++) {
…
…

}
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Homework and Lessons
1. [Homework4] Parallelize sample code of 

dense matrix-matrix multiplication. You can 
use redundant allocation of arrays for matrix A, 
B, and C for initial data distribution. 

2. Make a hybrid MPI/OpenMP code, then 
evaluate its performance by using several 
executions with respect to MPI processes and 
OpenMP threads in environments of lecture. 
Find condition that pure MPI is the fastest by 
using results of the evaluation.
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