
Non-blocking
Communications

名古屋大学情報基盤中心 教授 片桐孝洋

Takahiro Katagiri, Professor,
Information Technology Center, Nagoya University

Introduction to Parallel Programming for
Multicore/Manycore Clusters

1

台大数学科学中心 科学計算冬季学校

Agenda
1. Technical terms of MPI for 1-to-1

communications
2. Execution of sample program

(Non-blocking Communication)
3. Lessons

Introduction to Parallel Programming for
Multicore/Manycore Clusters

2

How to optimize communications

Introduction to Parallel Programming for
Multicore/Manycore Clusters

3

Size of Message and
Times of Communication

Introduction to Parallel Programming for
Multicore/Manycore Clusters

4

Communication Time [s.]

Size of Message
[Bytes]

0

Region ①
Region with
constant time. It
does not depend
on sizes of
message.

Region ②
Region that is increase of execution
time according to size of message.

Communication
Set up Time

=
Latency
of
Communi-
cation
[s.]

Communication Time
= Communication latency2 +

Coefficient Slope × Size of MessageCommunication
Latency2 [s.]

Formula of communication time for region ②.

1 / Coefficient Slope [s. / byte]
= Memory Bandwidth [Bytes/s.]

Several Hundreds Bytes

Note: Optimization of Communications
(1/2)

 Knowing pattern of communications in your application in
viewpoint of follows to optimize the communication.
 Whether <Region ①> or <Region ②>?
 How many times of communications does it happen?

 In case of region ①:
 “Commutation Latency” is majority of execution time.
 Reduce times of communications.

 E.g.) Integrate communications that are sending with small size of messages.

 In case of region ②:
 “Communication Time” is majority of execution time.
 Reduce size of massages.
 E.g.) Do redundant computing and increase computation complexity if it

reduces size of messages.
Introduction to Parallel Programming for

Multicore/Manycore Clusters
5

Example of Communication to be Region①
 Sending size of message for reduction (MPI_Allreduce) of dot product is one unit

of double precision, thus 8 bytes.

 With respect to 8 bytes, it is same time between MPI_Allreduces between 8
bytes and several bytes.
 ⇒Integrating several times of dot products can be reduce communication time.

 E.g.）Dot products in Conjugate Gradient (CG) method, which is an iterative
solver for linear equations.
 Simple implementation, there are three dot products per iteration.
 Hence communication latency is majority for dot products.
 If we can use multiple iterations for one time, communication time of dot

products can be reduced by 1/k time.
 However it is difficult to converge by using simple implementation.
 This is hot topic for HPC. It is known as Communication Avoiding CG

(CACG).

Introduction to Parallel Programming for
Multicore/Manycore Clusters

6

Note: Optimization of Communications
(2/2)

 Reducing “Synchronization Points” contributes fast execution.
 To use “non-blocking” function of MPI
 E.g.) Blocking Function MPI_SEND()

→ Non-blocking function MPI_ISEND()
 Communication and computation simultaneously

Introduction to Parallel Programming for
Multicore/Manycore Clusters

7

Compute send Compute send Compute send …Rank #0

Rank #1 Compute recv Compute recv Compute recv …

Compute isend Compute isend Compute isend …Rank #0

Rank #1 Compute irecv Compute irecv Compute irecv …

Wait Wait Wait

A Synchronization
Point

Using Non-blocking Function

Reducing
Time

Non-blocking Communications:
Isend, Irecv, and

persistent communication

Introduction to Parallel Programming for
Multicore/Manycore Clusters

8

An Example: Worst Case with
Blocking Communication

 If rank #0 has sending data to be used:

Introduction to Parallel Programming for
Multicore/Manycore Clusters

9

Compute send Compute

…

Rank #0

Rank #1 Compute recv

Wait

Synchronous
Point for
next iteration

Rank #2 Compute recv

Rank #3 Compute recv

send Wait send Wait …

Compute

Compute

Compute

Wait for finishing this iteration.

Wait for finishing this iteration.

Wait for

iteration.

Wait for
finishing this

iteration.

…

Several waiting causes by continuous sending.

Technical Terms of Non-blocking
Communication of MPI

Introduction to Parallel Programming for
Multicore/Manycore Clusters

10

Blocking and Non-blocking
1. Blocking
 Do not return when sending/receiving data is

stored to buffer area, and until it is reusable for
the buffer area.

 Assure consistency of data on the buffer area.

2. Non-blocking
 Return as soon as possible that whether

sending/receiving data is stored to buffer area, or
not.

 Do not assure consistency of data on the buffer area.
 Keeping consistency of data is duty for users.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

11

Local and Non-local
 Local
 To finalize procedure, it depends on only process

that is executing.
 Process that do not communicate with the other

processes.

 Non-local
 To finalize procedure, it may depend on MPI

procedures on the other processes.
 Process may not communicate with the other

processes.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

12

Communication Modes
(In case of sending)

1. Standard Communication Mode (Non-Local)：Default
 Buffering for sending message is controlled by MPI system.

 If the massage is buffered: Finalize the sending before finalizing target receiving.
 If the massage is not buffered: Wait until finalizing the sending.

2. Buffered Communication Mode (Local)
 Do buffering every time. If there is no area to do buffering, an error is

returned.

3. Synchronous Communication Mode (Non-Local)
 Wait until that buffer area can be reused, and target receiving starts.

4. Ready Communication Mode (The process its own is local)

 This is executable that target receiving is issued in calling time. Otherwise,
an error is returned.

 Since it can remove “hand shakings” for communication, it can establish high performance.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

13

An Example－MPI_Send
 MPI_Send Function
 Blocking
 Standard Communication Mode (Non-Local)
 Do not return until that buffer area is safe.
 If buffer area can be allocated:

Message are buffered. Sending can be finalized before
corresponding receiving is calling.

 If buffer area cannot be allocated:
Sending cannot be finalized until corresponding
receiving is calling, and message is sent to
corresponding receiver completely.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

14

Non-blocking Function
 ierr = MPI_Isend(sendbuf, icount, datatype,

idest, itag, icomm, irequest);

 sendbuf : Specify first address of sending array.
 icount : Integer type. Specify number of elements of

sending array.
 datatype : Integer type. Specify type of sending array.
 idest : Integer type. Specify rank for process that is

issued corresponding receive in icomm.
 itag : Integer type. Specify tag for receive massage.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

15

Non-blocking Function

 icomm : Integer type. Specify communicator.
In default, “MPI_COMM_WORLD” can be

specified.
 irequest : MPI_Request type. (An array of

Integer type.) An identifier of the sending
message is stored. (A communication handler)

 ierr : Integer type. An error code is stored.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

16

Function of Checking for Sending or
Receiving
 ierr = MPI_Wait(irequest, istatus);

 irequest : MPI_Request type. (A array of integer
type.) Specify identifier of the sending message
(A message handler).

 istatus : MPI_Status type. (A array of integer type.)
Status of receiving is stored.
 Declare array that number of elements is MPI_STATUS_SIZE.
 Rank of sending process is stored in istatus[MPI_SOURCE]

and its tag is stored in istatus[MPI_TAG].

Introduction to Parallel Programming for
Multicore/Manycore Clusters

17

An Example－MPI_Isend
 MPI_Ｉsend Function
 Non-blocking
 Standard Communication Mode (Non-Local)
 Return whether status of communication buffer area.
 If buffer area can be allocated, massage is buffered, and

sending is finalized before corresponding receive is
calling.

 If buffer area cannot be allocated, sending cannot be
finalized until that corresponding receive is called, and
sending message is copied to receiving area completely.

 We should understand that this behavior is a case when MPI_Wait function is calling.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

18

Note
We can understand with the followings
MPI_Send Function
MPI_Wait function is included in the
function;

MPI_Isend Function
MPI_Wait function is not included in the
function. And return to user program as
soon as possible;

Introduction to Parallel Programming for
Multicore/Manycore Clusters

19

Note of Parallelization (MPI_Send and
MPI_Recv)
 If MPI_Send is called in all processes in advance of receive,

process is halted in the place. (cf. Standard Communication
Mode) （To describe exactly, it can work in a limited case)

 In MPI_Send, buffer area cannot allocated due to memory
consumption.

 The process should be waited until buffer area can be reused.
A spin-wait (busy wait) is happen.

 To avoid this, implement the following for an example.
 If number of rank can be devisable with 2:

 MPI_Send();
 MPI_Recv();

 The others:
 MPI_Recv();
 MPI_Send();

Introduction to Parallel Programming for
Multicore/Manycore Clusters

20

Corresponding each

TIPS for Non-blocking Functions
 Knowing type of messages without receiving all

messages.
 In case of changing implementation with respect to

type of receiving messages.

 MPI_Probe function (Blocking)
 MPI_Iprobe function (Non-blocking)
 MPI_Cancel function (Non-blocking and Local)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

21

MPI_Probe Function
 ierr = MPI_Probe(isource, itag, icomm,

istatus) ;
 isource: Integer type. Specify sending rank.
 “MPI_ANY_SOURCE” (Integer type) is also

describable.
 itag: Integer type. A number of tag.
 “MPI_ANY_TAG” (Integer type) is also describable.

 icomm: Integer type. Communicator.
 istatus： Status object.
 If there is message with rank of “isource” and tag of

“itag”, the function returns.
Introduction to Parallel Programming for

Multicore/Manycore Clusters
22

MPI_Iprobe Function
 ierr = MPI_Iprobe(isource, itag, icomm,

iflag, istatus) ;
 isource: Integer type. Specify sending rank.
 “MPI_ANY_SOURCE” (Integer type) is also describable.

 itag: Integer type. A number of tag.
 “MPI_ANY_TAG” (Integer type) is also describable.

 icomm: Integer type. Communicator.
 iflag: Logical type. If there is message with rank of “isource”

and tag of “itag”, it returns with true.
 istatus： Status object.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

23

MPI_Cancel Function

 ierr = MPI_Cancel(irequest);

 irequest: integer type. Communication
handler.

 Return as soon as possible before canceling target
massage.

 To specify the cancelation, it should be finalized that
MPI_Request_free function, MPI_Wait function, and
MPI_Test function, or arbitrary functions to operate it.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

24

An Example: Non-blocking
Communication (C Language)
if (myid == 0) {

…

for (i=１; i<numprocs; i++) {

ierr = MPI_Isend(&a[0], N, MPI_DOUBLE, i,

i_loop, MPI_COMM_WORLD, &irequest[i]);

}

} else {

ierr = MPI_Recv(&a[0], N, MPI_DOUBLE, 0, i_loop,

MPI_COMM_WORLD, &istatus);

}

Computation with a[];

if (myid == 0) {

for (i=１; i<numprocs; i++) {

ierr = MPI_Wait(&irequest[i], &istatus);

}

}

Introduction to Parallel Programming for
Multicore/Manycore Clusters

25

Rank #0 process sends array
with length N and type of
double from process that
rank #1 to rank #numprocs-1.

Processes that rank #1 to
rank #numprocs-1 wait for
receiving from rank #0.

Process of rank #0 is doing
spin-wait (busy wait) until
finalizing sending
data to processes that
from rank #1 to
rank #numprocs-1.

Rank #0 starts computation
unless waiting for
receiving of the other ranks

An Example: Non-blocking
Communication (Fortran Language)

if (myid .eq. 0) then
…

do i=１, numprocs - １

call MPI_ISEND(a, N, MPI_DOUBLE_PRECISION,

i, i_loop, MPI_COMM_WORLD, irequest, ierr)

enddo

else

call MPI_RECV(a, N, MPI_DOUBLE,_PRECISION ,

0, i_loop, MPI_COMM_WORLD, istatus, ierr)

endif

Computation with a().

if (myid .eq. 0) then

do i=１, numprocs - １

call MPI_WAIT(irequest(i), istatus, ierr)

enddo

endif

Introduction to Parallel Programming for
Multicore/Manycore Clusters

26

Rank #0 process sends array
with length N and type of
double precision
from process that
rank #1 to rank #numprocs-1.

Processes that rank #1 to
rank #numprocs-1 wait for
receiving from rank #0.

Process of rank #0 is doing
spin-wait (busy wait) until
finalizing sending
data to processes that
from rank #1 to
rank #numprocs-1.

Rank #0 starts computation
unless waiting for
receiving of the other ranks

Improvement by Non-blocking
Communication

 In case of having a needed data in rank #0

Introduction to Parallel Programming for
Multicore/Manycore Clusters

27

Compute isend Compute

…

Rank #0

Rank #1 Compute recv

Synchronous
Point for
next iteration

Rank #2 Compute recv

Rank #4 Computer recv

isend Waitisend …

Compute

Compute

Compute

Wait for finishing this iteration.

Wait for finishing this
iteration.

…

Wait for

iteration.

Wait for
finishing this

iteration.

Time for waiting of corresponding
sending is reduced by non-blocking
function.

This wait is changed with
MPI_Wait, and moved to
part of after computation.

Persistent Communication (1/2)
 If implementation of MPI_ISEND is not supporting to start

sending data after calling the function, there is no effect for
non-blocking communication.

 However, some implementations do not start sending data for
MPI_ISEND until time of calling MPI_WAIT.
 In this case, there is no effect for non-blocking communication.

 Using “Persistent Communication” may improve the effect of
non-blocking communication.
 MPI-1 supports the persistent communication. Hence usually it is

available for your environment.
 Note: There is different problem that implementation of persistent

communication is supporting the above function (communication
overlapping) or not. However its performance is better or same in
theoretically. Introduction to Parallel Programming for

Multicore/Manycore Clusters
28

Persistent Communication (2/2)
 How to use persistent communications?

1. Call an initialization function to set sending information
before entering target loop.

2. Write MPI_START in the point of MPI_SEND.
3. Function to specify synchronization point, such as

MPI_WAIT, MPI_ISEND or same sending functions
can be described.

 By using MPI_SEND_INIT to initialize communication
information, there is no settings process in MPI_START.
 In case of multiple sending to same rank, performance is increased or same

to a non-blocking function.

 Examples:
 Explicit methods for domain decomposition method.
 Implicit methods for iterative solver.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

29

An Example: Persistent Communication
(C Language)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

30

MPI_Status istatus;
MPI_Request irequest[numprocs];
…
if (myid == 0) {
for (i=1; i<numprocs; i++) {
ierr = MPI_Send_init (a, N, MPI_DOUBLE_PRECISION, i,

0, MPI_COMM_WORLD, irequest[i]);
}
}
…
if (myid == 0) {
for (i=1; i<numprocs; i++) {
ierr = MPI_Start (irequest);

}
}

/* After this , it is same as example of Isend. */

Initialize information of
sending data before
entering main loop.

The massage is
sent in here.

An Example: Persistent Communication
(Fortran Language)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

31

integer istatus(MPI_STATUS_SIZE)
integer irequest(0:MAX_RANK_SIZE)
…
if (myid .eq. 0) then
do i=1, numprocs-1
call MPI_SEND_INIT (a, N, MPI_DOUBLE_PRECISION, i,

0, MPI_COMM_WORLD, irequest(i), ierr)
enddo
endif
…
if (myid .eq. 0) then
do i=1, numprocs-1
call MPI_START (irequest, ierr)

enddo
endif/* After this , it is same as example of Isend. */

Initialize information of
sending data before
entering main loop.

The massage is
sent in here.

Execute a sample program
(Non-blocking Communication)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

32

Note: Sample Program of LU Decomposition
 File name of C/Fortran Languages

Isend-fx.tar
 Change queue name from lecture to lecture7
In job script file “isend.bash”. Then enter “pjsub.”
 lecture : Queue for time of out of the lecture.
 lecture7: Queue for time in the lecture.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

33

Execute sample program of MPI_Isend
(Common with C and Fortran Languages)
 Type the following commands.

$ cp /home/z30082/ISend-fx.tar ./
$ tar xvf ISend-fx.tar
$ cd Isend

 Choose one:
$ cd C : For C language users.
$ cd F : For Fortran language users.

 The followings are common. Type them.
$ make
$ pjsub isend.bash

 After execution, type the follow.
$ cat isend.bash.oXXXXXX

Introduction to Parallel Programming for
Multicore/Manycore Clusters

34

Output
 The following is obtained. (C Language)

Execution time using MPI_Isend : 30.3248 [sec.]

Introduction to Parallel Programming for
Multicore/Manycore Clusters

35

Explanation of sample program
(C Language)

if (myid == 0) {
…

for (i=１; i<numprocs; i++) {

ierr = MPI_Isend(&a[0], N, MPI_DOUBLE, i,

i_loop, MPI_COMM_WORLD, &irequest[i]);

}

} else {

ierr = MPI_Recv(&a[0], N, MPI_DOUBLE, 0, i_loop,

MPI_COMM_WORLD, &istatus);

}

…

if (myid == 0) {

for (i=１; i<numprocs; i++) {

ierr = MPI_Wait(&irequest[i], &istatus);

}

}

Introduction to Parallel Programming for
Multicore/Manycore Clusters

36

Rank #0 process sends array
with length N and type of
double from process that
rank #1 to rank #191.

Processes that rank #1 to
rank #191 wait for
receiving from rank #0.

Process of rank #0 is doing
spin-wait (busy wait) until
finalizing sending
data to processes that
from rank #1 to rank #191.

Explanation of sample program
(Fortran Language)

if (myid .eq. 0) then
…

do i=１, numprocs - １

call MPI_ISEND(a, N, MPI_DOUBLE_PRECISION,

i, i_loop, MPI_COMM_WORLD, irequest, ierr)

enddo

else

call MPI_RECV(a, N, MPI_DOUBLE,_PRECISION ,

0, i_loop, MPI_COMM_WORLD, istatus, ierr)

endif

…

if (myid .eq. 0) then

do i=１, numprocs - １

call MPI_WAIT(irequest(i), istatus, ierr)

enddo

endif

Introduction to Parallel Programming for
Multicore/Manycore Clusters

37

Rank #0 process sends array
with length N and type of
double precision
from process that
rank #1 to rank #191.

Processes that rank #1 to
rank #191 wait for
receiving from rank #0.

Process of rank #0 is doing
spin-wait (busy wait) until
finalizing sending
data to processes that
from rank #1 to rank #191.

Lesson
1. Explain that blocking communication in MPI is not always

synchronization communication.
2. Survey and summarize functions of blocking and non-

blocking of MPI in viewpoint of communication mode.
3. Survey effective condition for sending size of messages,

such as N is from 0 to an upper value, for blocking
communication (MPI_Send function) to non-blocking
communication (MPI_Isend function) by using parallel
computers. Then discuss results.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

38

