Parallelization of Power Method

名古屋大学情報基盤中心 教授 片桐孝洋

Takahiro Katagiri, Professor, Information Technology Center, Nagoya University

台大数学科学中心 科学計算冬季学校

Agenda

- Power Method
- Execute sample program of power method
- 3. Explanation of sample program
- 4. Lecture of parallelization
- 5. Homework

Power Method

- Maximum absolute eigenvalue and corresponding eigenvector of standard eigenproblem can be calculated by using power method.
 - Standard Eigenproblem: $Ax = \lambda x$
 - ightharpoonup An Eigenvector: χ
- , where a matrix A be a $n \times n$ matrix.
- Let sorted of eigenvalues of A from large part of its absolute, and with no deflation be $\lambda_1, \lambda_2, \cdots, \lambda_n$.
- Let corresponding eigenvectors with normalized and orthogonalized be x_1, x_2, \dots, x_n .
- ▶ We can describe arbitrary vector with a linear combination:

$$u = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

▶ By applying A to left hand side, we obtain;

$$Au = A(c_1x_1 + c_2x_2 +, +c_nx_n)$$

With respect to formula of standard eigenvalue problem, we obtain:

$$Au = c_1 \lambda_1 x_1 + c_2 \lambda_2 x_2 + \dots + c_n \lambda_n x_n$$

$$= \lambda_1 \left[c_1 x_1 + c_2 \frac{\lambda_2}{\lambda_1} x_2 + \dots + c_n \frac{\lambda_n}{\lambda_1} x_n \right]$$

 \blacktriangleright By applying Au with n-times, we obtain:

$$A^{k}u = \lambda_{1}^{k} \left[c_{1}x_{1} + c_{2} \left[\frac{\lambda_{2}}{\lambda_{1}} \right]^{k} x_{2} + \dots + c_{n} \left[\frac{\lambda_{n}}{\lambda_{1}} \right]^{k} x_{n} \right]$$

- ▶ This implies that coefficients of the vectors are reducing except for x_1 when k is increasing.
 - →It converges with a maximum eigenvalue and a corresponding eigenvector.

 \blacktriangleright We denote (x, y) for dot products. Consider the following formula:

$$\frac{(A^{k+1}u, A^{k+1}u)}{(A^{k+1}u, A^{k}u)} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j}\lambda_{i}^{k+1}\lambda_{j}^{k+1}(x_{i}, x_{j})}{\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i}c_{j}\lambda_{i}^{k+1}\lambda_{j}^{k}(x_{i}, x_{j})}$$

$$= \frac{\lambda_{1}^{2k+2} \left[c_{1}^{2} |x_{1}|^{2} + \sum_{i=2}^{n} c_{i}^{2} \left[\frac{\lambda_{i}}{\lambda_{1}} \right]^{2k+2} |x_{i}|^{2} \right]}{\lambda_{1}^{2k+1} \left[c_{1}^{2} |x_{1}|^{2} + \sum_{i=2}^{n} c_{i}^{2} \left[\frac{\lambda_{i}}{\lambda_{1}} \right]^{2k+1} |x_{i}|^{2} \right]} \approx \lambda_{1}^{(k \to \infty)}$$

$$\lambda_{1}^{2k+1} \left[c_{1}^{2} |x_{1}|^{2} + \sum_{i=2}^{n} c_{i}^{2} \left[\frac{\lambda_{i}}{\lambda_{1}} \right]^{2k+1} |x_{i}|^{2} \right]$$

Algorithm of Power Method

Do the following until converge:

- 1. Make an initial guess x and normalize it;
- 2. $\lambda_0 = 0.0$; i = 1;
- 3. Compute a matrix-vector multiplication: y = A x;
- 4. Compute an approximate eigenvalue $\lambda_i = (y, y) / (y, x)$;
- 5. If $|\lambda_i \lambda_i|$ is small enough:
 - It converges, and exit;
- 6. Otherwise:
 - \square Normalize x and x = y;
 - \Box i = i + 1; go to 3;

Execute sample program (Power Method)

Note: Sample program of power method

- File name of C/Fortran codes: PowM-fx.tar
- Change queue name from lecture to lecture7 in job script file pown.bash.
- Submit the job with "pjsub".
 - ▶ lecture : Queue in out of time for the lesson.
 - ▶ lecture7: Queue in time for the lesson.

Execute sample program of power method

- Type the followings in command line.
 - \$ cp /home/z30082/PowM-fx.tar ./
 - \$ tar xvf PowM-fx.tar
 - \$ cd PowM
- Choose the follows:
 - \$ cd C : For C language.
 - \$ cd F : For Fortran language.
- Type the follows:
 - \$ make
 - \$ pjsub powm.bash
- After finishing execution, type the follow:
 - \$ cat powm.bash.oXXXXXX

Output for sample program of power method (C Language)

The follows can be seen if execution is successfully ended.

N = 4000

Power Method time = 0.472348 [sec.]

Eigenvalue = 2.000342e+03

Iteration Number: 7

Residual 2-Norm ||A x - lambda x||_2 = 7.656578e-09

Output for sample program of power method (Fortran Language)

The follows can be seen if execution is successfully ended.

```
N = 4000
```

Power Method time[sec.] = 0.3213765330146998

Eigenvalue = 2000.306721217447

Iteration Number: 6

Residual 2-Norm ||A x - lambda x||_2 = 4.681124813641846E-07

Explanation of sample program

You can change size of matrix to modify the following number of:

#define N 4000

- Specification of PowM function
 - Maximum eigenvalue with double precision is returned.
 - Eigenvector corresponding to maximum eigenvalue is stored in array of x with double precision
 - Iteration count when it converges is stored in argument n_iter.
 - ▶ If it returns "-I", then this means that no convergence is happen until maximum iteration MAX_ITER.

Note: sample program of Fortran

Declaration of size of matrix NN and MAX_ITER is in: pown.inc

The size of matrix is defined by variable NN:

integer NN parameter (NN=4000)

Overview of sample program (in function of PowM)

```
/* Normizeation of x */
                                                                      /* Convergence test*/
                                                                      if (fabs(d before-dlambda) < EPS ) {
 d \text{ tmp1} = 0.0;
 for(i=0; i<n; i++) {
                                                                       *n iter = i loop;
                                       Normalization
   d tmp1 += x[i] * x[i];
                                                                       return dlambda;
                                       of vector x
 d tmp1 = 1.0 / sqrt(d tmp1);
 for(i=0; i<n; i++) {
                                                                    /* keep current value */
                                                                    d before = dlambda;
   x[i] = x[i] * d tmp1;
                                                                 /* Normalization and set new x */
 /* Main iteration loop ----- */
                                                                    d tmp1 = 1.0 / sqrt(d tmp1);
 for(i loop=1; i loop<MAX ITER; i loop++) {
                                                                    for(i=0; i<n; i++)
                                                                     x[i] = y[i] * d_tmp1;
    /* Matrix Vector Product */
                                      Matrix-vector
                                                                                                       Normalization
    MyMatVec(y, A, x, n);
                                                                   } /* end of i loop
                                      Multiplications
                                                                                                       and
    /* innner products */
                                                                                                       setting of new
      d \text{ tmp1} = 0.0;
      d \text{ tmp2} = 0.0;
                                                                                                       vector x.
                                       Dot product
     for (i=0; i<n; i++) {
     d \text{ tmp1} += y[i] * y[i];
                                       with vectors
     d tmp2 += y[i] * x[i];
                                       x and y.
    /* current approximately eigenvalue */
    dlambda = d tmp1 / d tmp2;
```

Homework 3

- ▶ Parallelize function (procedure) of PowM.
 - ▶ For debugging, set #define N 192.
 - Use parallel matrix-vector code in previous lesson.
- In the sample program, 2-norm of residual vector $Ax-\lambda x$ is calculated. Use the calculated value for debugging.
 - If you found big value of this, it means a bug in program.
 - The parallelization of computation of 2-norm may be needed if you choose "perfect" distribution of vector x. This explains later.
- By parallelization, number of iteration and execution time may change.

Hints for parallelization

- As same as previous lesson, one of easy ways to parallelize the code is allocating redundant matrix A with NxN, vectors x and y with N, for each processes.
- Use following distributions. This is as same as previous lesson for matrix-vector multiplication.
 - ► Matrix A:

Row-wise block distribution with one dimensional.

- Vector x:
 - Allocate redundant vector with N dimension for all processes.
- Vector y: Block distribution.

Hints of parallelization (Strategy)

- ▶ There are two ways to parallelize the code:
 - Way I: Only parallelization for part of "matrix-vector multiplication"
 - Way 2: Parallelization of all routines.
- Easy way is I (But parallel efficiency is limited). The follows is procedure.
 - 1. Use developed "parallel matrix-vector multiplication".
 - Since y of y = Ax is retuned by distributed manner, it cannot continue the following computations. Hence to match sequential result, we need a communication such that:
 - By using an MPI function just after part of calling MyMatVec() in PowM function to gather all distributed elements of y.
 - There are many ways to implement it. The easiest way is implementation with MPI_Allreduce().
 - To use MPI_Allreduce(), initialization of array, such as fill on 0, is needed.

 This will be explained later.

Hints of parallelization (Way 2. Parallelization of all routines)

- Parallelize processes in function PowM with the following:
 - For the part of normalization of vector \mathbf{x}
 - After finishing local computations of dot product with block distribution, call function of MPI Allreduce, which as shown as the follow.
 - Gather all elements of vector for partially calculated in each PE with MPI_Allreduce function. This will be explained later.

Hints of parallelization (Way 2. Parallelization of all routines)

▶ The follows is an implementation:

```
/* Normizeation of x */
 d tmp1 t = 0.0;
 for(i=myid*ib; i<i_end; i++) {</pre>
   d tmp1 t += x[i] * x[i];
 MPI_Allreduce(&d_tmp1_t, &d_tmp1, 1, MPI_DOUBLE,
    MPI SUM, MPI_COMM_WORLD);
 d tmp1 = 1.0 / sqrt(d_tmp1);
 for(i=myid*ib; i<i end; i++) {
   x t[i] = x[i] * d tmp1;
  /* x t[] is set to 0 in initial state. */
 MPI_Allreduce(x_t, x, n, MPI_DOUBLE, MPI_SUM,
   MPI COMM WORLD);
```

Hints of parallelization (Both way 1 and way 2)

- 2. Part of matrix-vector multiplication. (In MyMatVec Function)
 - Use parallel code in previous lesson.

Hints of parallelization (Way 2. Parallelization of all routines)

- 3. Dot product of vectors x and y.
 - Compute with respect to block distribution.
 - To obtain correct answer, do not forget to use MPI_Allreduce function.

Hints of parallelization (Way 2. Parallelization of all routines)

- 4. Part of normalization and set new x:
 - x: Allocated redundant vector with N-dimensional;y: Block distribution;
 - Computations of normalization are performed with local data, and set result to x.
 - ▶ Elements of x are distributed. Hence calculated x is stored in block distribution manner.
 - All elements of x need since next computation of matrix-vector multiplication is needed with the whole elements of x
 - ▶ To gather distributed data, we use MPI_Allreduce.
 - □ To use MPI_Allreduce, we allocate a buffer array x_t with zero cleared for distributed part. This can be used as:

 MPI_Allreduce(x_t, x, n, MPI_DOUBLE, MPI_SUM,

24

Confirmation of MPI_Allreduce function (C Language)

MPI_Allreduce

(x_t, x, n, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

Input vector.

Each PE has

different
elements.

Output vector.

Each PE has

same
element.

Length of vectors.

Type of elements of vector.

Specifying operations.

MPI_SUM: summation of elements of vectors in each PE.

Communicator.

Confirmation of MPI_Allreduce function (Fortran Language)

▶ MPI_ALLREDUCE

(x_t, x, n, MPI_DOUBLE_PRECISON, MPI_SUM, MPI_COMM_WORLD, ierr)

Input vector
Each PE has
different
elements.

Output vector.
Each PE has
same
element.

Length of vectors.

Type of elements of vector

Specifying operations.

MPI_SUM: summation of elements of vectors in each PE.

Communicator.

A technique of MPI (Gather vectors with MPI_Allreduce)

- ▶ Gather distributed data with MPI_Allreduce function, then it owns redundant elements between all PEs.
 - Write MPI_SUM in iop
 - Initialize elements of own part with 0.
 - Consider the following process.

It can also be implemented with MPI_gather.

Homework 3

(Standard level) For the first step, implement

Way I: Only parallelization for part of "matrix-vector multiplication"

(High level) After finishing the way I, implement

Way 2: Parallelization of all routines.

Lessons

- I. Homework 3
- Parallelize the sample program and evaluate it. Only allocations of required size of arrays of matrix A and vectors x and y for each PE are allowed.
 Compare performance to I.

Lessons (Cont'd)

- 3. Evaluate number of iterations when options of compiler are changed. Compute execution time per iteration to evaluate it.
- 4. Improve performance of the sample programs with nonblocking communications. Evaluate program with several sizes of matrices.
- 5. Parallelize the program with hybrid MPI/OpenMP execution. Evaluate the program with several combinations of execution, such as P8T16, P16T8, and so on.

Find condition that pure MPI execution is the fastest to other hybrid MPI/OpenMP execution.

