Homework1

OpenMP parallelization with the FX10 or own PC

名古屋大学情報基盤中心 教授 片桐孝洋
Takahiro Katagiri, Professor,
Information Technology Center, Nagoya University

台大数学科学中心 科学計算冬季学校

Summary of this lesson

- ▶ There are two ways to do this lesson.
 - By using own PC
 - Use Linux, and gnu tools (gcc or gfortarn).
 - Download sample program via the HP.
 - 2. By using the FX10
 - Use FX10 account and ssh connection to ITC. U.Tokyo.
 - Lecture that how to use the FX10 will be done in this afternoon. Refer to the lecture notes.

Execute sample program by using own PC (Matrix-Matrix Multiplication)

Note: Sample program of matrix-matrix multiplication (OpenMP) by using own PC

- Common file name of C/Fortran languages: Mat-Mat.tar
- Download the **Mat-Mat.tar** via homepage of the lecture.

Execute sample program of dense matrix-matrix multiplication

- Install Mat-Mat.tar to your PC.
- Type followings in command line:
 - \$ tar xvf Mat-Mat.tar
 - \$ cd Mat-Mat
- Choose the follows:
 - \$ cd C : For C language.
 - \$ cd F : For Fortran language.
- ▶ The follows are common:
 - \$ make
- Confirm executable code (mat-mat.exe).
 - \$ Is
- Execute mat-mat.exe
 - \$./mat-mat.exe

Output of sample program of dense matrix-matrix multiplication (C Language)

If the run is successfully ended, you can see the follows:

N = 1000

Mat-Mat time = 2.532533 [sec.]

789.723319 [MFLOPS]

OK!

The execution time depends on ability of computations for your PC.

Output of sample program of dense matrixmatrix multiplication (Fortran Language)

If the run is successfully ended, you can see the follows:

NN = 1000

Mat-Mat time [sec.] = 1.6323672519647516

MFLOPS = 1225.2144807139712

OK!

The execution time depends on ability of computations for your PC.

Explanation of sample program (C Language)

You can change size of matrix by the number:#define N 1000

By setting I in the follow "0", result of matrixmatrix multiplication is verified:

#define DEBUG 0

- Specification of MyMatMat function
 - Return result of A times B with size of [N][N] of double by setting C with size of [N][N] of double.

Explanation of sample program (Fortran Language)

You can find declaration of size of dimension N in the following file:

mat-mat.inc

Variable of the size of dimension is NN, such as:

```
integer NN parameter (NN=1000)
```


Homework 1 (Own PC)

- Parallelize MyMatMat function by using OpenMP.
 - Modify source code (mat-mat.c or mat-mat.f) by using a text editor, such as emacs.
 - Type "make clean", then "make" again.
 - Before execution, specify number of threads as follows:
 - \$ export OMP_NUM_THREADS=4

Note: Homework 1 (Own PC)

- If your PC does not have a multicore CPU, there is no effect for parallelization.
- If your PC has a multicore CPU, evaluate parallel efficiency by varying the number of threads, such as from 1 to 4 (or more).
- You may change size of matrices to obtain better parallel efficiency. For example, modify the size from 1000 (original) to 2000 or more.
 - You also take care of physical memory capacity, such as 8GB.

Answer code of sample program of matrix-matrix multiplication

Answer code of matrix-matrix multiplication (OpenMP) (C Language)

▶ The main program is as follows:

```
#pragma omp parallel for private (j, k)
   for(i=0; i<n; i++) {
    for(j=0; j<n; j++) {
      for(k=0; k<n; k++) {
       C[i][i] += A[i][k] * B[k][i];
```

Answer code of matrix-matrix multiplication (OpenMP) (Fortran Language)

▶ The main program is as follows:

```
!$omp parallel do private (j, k)
do i=1, n
  do j=1, n
      do k=1, n
        C(i, j) = C(i, j) + A(i, k) * B(k, j)
      enddo
  enddo
enddo
```

Execute sample program by using the FX10 (Matrix-Matrix Multiplication)

Note: Sample program of matrix-matrix multiplication (OpenMP) by using the FX10

- Common file name of C/Fortran languages: Mat-Mat-openmp-fx.tar
- Modify queue name from lecture to lecture6 in job script file mat-mat-openmp.bash. Then type "pjsub".
 - lecture: Queue in out of time of this lecture.
 - ▶ lecture6 Queue in time of this lecture.

Execute sample program of dense matrix-matrix multiplication

- Type followings in command line:
 - \$ cp /home/z30082/Mat-Mat-openmp-fx.tar ./
 - \$ tar xvf Mat-Mat-openmp-fx.tar
 - \$ cd Mat-Mat-openmp
- Choose the follows:
 - \$ cd C : For C language.
 - \$ cd F : For Fortran language.
- ▶ The follows are common:
 - \$ make
 - \$ pjsub mat-mat-openmp.bash
- After finishing the job, type the follow:
 - \$ cat mat-mat-openmp.bash.oXXXXX

Output of sample program of dense matrix-matrix multiplication (C Language)

If the run is successfully ended, you can see the follows:

Note: OpenMP parallelization is not implemented.

```
N = 1000
Mat-Mat time = 0.181551 [sec.]
11016.210378 [MFLOPS]
OK!
```


Output of sample program of dense matrixmatrix multiplication (Fortran Language)

If the run is successfully ended, you can see the follows:

Note: OpenMP parallelization is not implemented.

```
N = 1000
Mat-Mat time[sec.] = 0.1802263529971242
MFLOPS = 11097.15622433085
OK!
```


Homework 1 (FX10)

- Parallelize MyMatMat function by using OpenMP.
 - Make sure processes of programing for the FX10. Refer to lecture of "How to use the FX10."
 - By using emacs, modify queue name.
 - Modify number of threads in mat-matopenmp.bash as follows: export OMP_NUM_THREADS=16

