Introduction to
Parallel Processing

SRR AR hL IR YR
Takahiro Katagiri, Associate Professor,
Information Technology Center, The University of Tokyo

BRBERFERL HERELEER

Introduction to Parallel Programming for e
. & & SRR EREE T —
Multlcore/Manycore Clusters INFORMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Agenda

|. Basics of Parallel Programming
2. Metrics of Performance Evaluation
3. Data Distribution Methods

2 Introduction to Parallel Programming for [s e~
RRARFEHREE Y —
INFORMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Multicore/Manycore Clusters

Basics of Parallel Programming

Introduction to Parallel Programming for —
== T=S
Multi HRRKFEREBRT Y —
ultlcore/Manycor'e Clusters INFGRMATION TECHNOLOGY CENTER, THE UNIVERSITY GF TOKYO

What is Parallel Programming?

» Making T / p execution time for sequential programming
(execution time T) with p machines.

T
T/ p
» It seems very easy.
» However, it depends on target process (algorithms).
Part of sequential that cannot be parallelized.
Communication overheads:
Communication set up latency.
Data transfer time.
4 Introduction to Parallel Programming for BT SRS) —

Multico re/Manycore Clusters INFORMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Parallel and Concurrent

» Parallel
Physically parallel (time independent)

There are many things in a time.

I
» Concurrent

Theoretical parallel (time dependent)

There is one thing in a time (with a processor).

> T

Time division multiplexing, Pseudo Parallelization.
Process scheduling by OS (Round-robin Scheduling)

5 Introduction to Parallel Programming for
Multicore/Manycore Clusters

RRKPEHREBE TS5 —

INFORMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Classification of Parallel Computers

» Classification by Prof. Michael |
(Stanford U.) (1966)

. Flynn

» SISD, Single Instruction Single Data Stream

» SIMD, Single Instruction Multip

e Data Stream

» MISD, Multiple Instruction Sing
» MIMD, Multiple Instruction Mu

e Data Stream
tiple Data Stream

6 Introduction to Parallel Programming for s e~
. & 5 HRRKFEREBRT Y —
MUIUCore/Manycore Clusters INFGRMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Classification of Parallel Computers
})y Memory Types

I

LI Communication Network

I, Shared Memory Type |
(SMP, lPEI PE || PE || PE

Symmetric Multiprocessor)

/

N

Communlcatlon Network

2. Distributed Memory Type |
essee Fresne HH HH

| Communication Network I_l
3. Distributed Shared Memory | |

| HHHH

7 Introduction to Parallel Programming for
Multicore/Manycore Clusters

e
N

Classification of Parallel Computers
by Memory Types

/

4.

Shared and Unsymmetric
Memory Type

(ccNUMA,

Cache Coherent Non-
Uniform Memory Access)

[_Icomml. 1 comm. h

l DSM |[DSM l DSM | DSM '

Introduction to Parallel Programming for

J—— N ~
. m AR5 —
Multico re/Manycore Clusters INFGRMATION TECHNOLOGY CENTER, THE UNIVERSITY GF TOKYO

Relationships between Classification
of Parallel Computers and MPI

» Target of MPI is distributed memory parallel
computers.

MPI defines communications between distributed
memories.

» MPI can apply shared memory parallel computers.

MPI can perform process communication in shared
memory.

» Programming model with MPI is SIMD.

Program with MPI is only one (= an instruction), but
there are several data in the program (such as arrays).

9 Introduction to Parallel Programming for [s e~
RRARFEHREE Y —
INFORMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Multicore/Manycore Clusters

Models of Parallel Programming

» Behavers of actual programming are MIMD.
» But SIMD is basic model when we program.

It is impossible to understand complex behavers.

et

o
1
) 8 0

10 Introduction to Parallel Programming for —— e
. & & RRAPERER T Y —
Multico re/Manycor‘e Clusters INFGRMATION TECHNOLOGY CENTER, THE UNIVERSITY GF TOKYO

DATA4

]

Models of Parallel Programming

» Parallel Programming Model in MIMD
SPMD (Single Program Multiple Data)

A common program is copied to all processors when
starting parallel processing.

Model of MPI (version)

Processor 3

Processor | Processor 2

-
C - = e — —
| ' DATA | DATA 2 DATA3

Master / Worker (Master / Slave)

One process (A Master) creates / deletes
multiple processes (Workers).

Il Introduction to Parallel Programming for e
. & 5 HRRKFEREBRT Y —
Multico re/Manycore Clusters INFGRMATION TECHNOLOGY CENTER, THE UNIVERSITY GF TOKYO

Kinds of Parallel Programming

» Multi Processes

Difference between process

» MPI (Message Passing Interface) and threads.
» HPF (High Performance Fortran) *Take care of shared memory
: : : L or not.
Fortran Compiler with Automatic Parallelization. A
. S - *Distributed Memory
Programmer describes data distribution explicitly.
. > Process
» Multi Threads Shared Memory

» Pthread (POSIX threads) >Thread

» Solaris Thread (Sun Solaris OS)
» NT thread (Windows NT, After Windows95)

Fork and Join are explicitly described for threads.

» Java Multi processes and Multi threads
ELIIEEEELECWEL SR QI can be used simultaneously:
» OpenMP > Hybrid MPI /| OpenMP executions.

> 12 Introduction to Parallel Programming for BT A SIS RS A —

Multico re/Manyco re Clusters INFGRMATION TECHNOLOGY CENTER, THE UNIVERSITY GF TOKYO

Example of Parallel Processing (1)

» Data parallelism

Parallelization to do data distribution.

As same as

Data operation (= instruction) is same. SIMD

Example of data parallelism: Matrix-Matrix Multiplication

® Parallelization

1 2 3) (9 8
4 5 6| |6 5
7 8 9) 13 2

T) (1%042%643%3 1%842%543%2 1%742%4+3%1
4 |= [479+5%6+6%3 4¥845%546%2 4%T+5%4+46%]

7¥94+8%6+9%3 7T*848%54+9%2 T*718%449%]
L)

Shared with all CPUs.

1*9+2%643*3 [*8+2*5+3%2 1*74+2%443%]

= [459+5%646%3 4%8+5%546%2 4% 7 +5%4+6%]

4

\7*9+8*6+9*3 T*Z+8*5+9*2 T*T+8%4+9%]

Parallel Computation: allocated data is different;

but computations are same.
Introduction to Parallel Programming for

Multicore/Manycore Clusters

RRKPEHREBE TS5 —

INFORMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Example of Parallel Processing (2)

» Task Parallelism

Parallelization by division of tasks (jobs)

Operations of data (=Instructions) may be different.

Example of task parallelism: Making Curry.

Taskl : Cutting vegetables.

Task2 : Cutting meat.

Task3 : Boling water.

Task4 :Boiling vegetables and meat.

Task5 : Stew with curry paste,

® Paralle- |
lization _ L
& Time
14 Introduction to Parallel Programming for BT A A E RS —

Multico re/Manycore Clusters INFORMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Metrics of
Performance Evaluation

Metrics of parallelization

Introduction to Parallel Programming for e
. & & SRR EREE T —
MUh'-lCOl'e/Man)’COf'e Clusters INFGRMATION TECHNOLOGY CENTER, THE UNIVERSITY GF TOKYO

Metrics of Parallelization -Speedup ratio

» Speedup ratio
Formula: Sp=T¢ /T, (OSSp)
T :Time for sequential. T, :Execution with P machines.
If we obtain S, =P with P machines, itis ideal speedup.

If we obtain S, > P with P machines, it is super-linear speedup.

Main reason is localizing data access, and ratio of cache hit increases. This
causes high efficiency of computation compared to sequential execution.

» Effectiveness of parallelization
Formula: E, =S, /P x100 (0<E,) [%]
» Saturation performance -b-------cooaeeeo.-

Limitation of speedup.

16 Introduction to Parallel Programming for —— s S s
. 8 & ' RRKFEHRERTE Y —
Multlcore/Manycore Clusters INFGRMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Amdahl's law

» Let K be time of sequential computation. Let a be ratio of
parallelization in the sequential part.

» The speedup ratio can be calculated as:

S, =K/(Kat/ P+K(1-a))
=/ P+(1—-a)) = 1/(e(l/P=T)+1)

» (Amdahl's law) With the above formula, we use processors

without limitation h as (P—), the limitation of
speedup ratio is:)]1 /(1 — &

This indicates that if we can parallelize 90% of total part, and
without limitation of number of processors, the maximum
speedup is only: 1/(1-0.9) = 10 Times!

C*ZICial. Introduction to Parallel Programming for [B ET KA SRS 4 —

Multico re/Manycore Clusters INFORMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

> To establish high performance, efforts of higher efficiencE of parallelization is

Amdahl's law : An example

Sequential part (1 Block) Parallel part (8 Blocks)
® Sequential Executio . =88.8% can be

drrrrird parallelized

® Parallel Execution
(4 parallelisms)

9/3=3 time

® Parallel Execution
(8 parallelisms)

9/2=4.5 times # 6 times

18 Introduction to Parallel Programming for e
. 8 & RRKFEHRERTE Y —
Multlcore/Man)'COI”e Clusters INFORMATION TECHNOLOGY CENTER, THE LINIVERSITY OF TOKYO

Basic Computations

» “Data structure” is important in sequential processing.

» “Data distribution” is important in parallel processing!

To improve “load balancing” between processes.
“Load Balancing” : One of basic operations for parallel processing.
Adjustment of grain of parallelism.

To improve “amount of required memory” between processes.

To reduce communication time after computations.

To improve “data access pattern” each process.
(= It is as same as data structure in sequential processing,.

» Data distribution methods

< Dimension Level>: One Dimensional Distribution, Two Dimensional
Distribution.

< Distribution Level>: Block Distribution, Cyclic Distribution.

19 Introduction to Parallel Programming for s o
. 8 & RRKFEHRERTE Y —
MUIUCore/Manycore Clusters INFORMATION TECHNOLOGY CENTER, THE LINIVERSITY OF TOKYO

One Dimensional Distribution

PE=0

N/4 rows

*(row wise) Block Distribution
*(Block, *) Distribution

N/4 rows
N/4 rows

N/4 rows

N columns

1 row

*(row wise) Cyclic Distribution
*(Cyclic, *) Distribution

2 rows
(row wise) Block-cyclic Distribution
(Cyclic(2), *) Distribution

“2" in this case: <Block Length>
20 Introduction to Parallel Programming for BT SRS) —

Multico re/Manycore Clusters INFORMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Two Dimensional Distribution
N2 /N

N/2

*Block-Block Distribution
*(Block, Block) Distribution

N/2

*Cyclic-Cyclic Distribution

*(Cyclic, Cyclic) Distribution
o(of1|1]o]of1]|1
o(of1|1]o]of1]|1
2 (2 (3(|3(2]2(3]3
212 |3|3]2]2(3|3]| <2 Dimensional Block-Cyclic Distribution
ojof1|1]o]o0 | 1 1] °*(Cyclic(2), Cyclic(2)) Distribution
o(of1|1]0]0 | 11
2 (2 (3(3[2[2]3]3

Introduction to Parallel Programming 21

212 (3[3(2)2|3]3 for Multicore/Manycore Clusters

Computation with vectors

» In the following computation:
Z=aX+y
,where a is a scalar,and z, x, and y are vectors.
» This can be parallelized with arbitrary distributions.

The scalar a is shared with all PEs.

While amount of memory for

vectors is O(n), but that of
memory for scalar is only O(1). _ m "
— The amount of memory for

scalar can be ignored.
Computation Complexity: O(N/P)

It is easy, but not interesting. z a X y

22 Introduction to Parallel Programming for [BT SRS) —

Multico re/Manycore Clusters INFORMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Matrix-vector Multiplication

» <Row wise> and <Column wise> computations.

Combination between <Data distributions> and <Computations>.

09 @) D2
o@ © > o
2|®| @ M ® 2
.. > | Ny w¢ Vv v 1@
for (i=0;i<n; i++) { for (j=0; j<n; j++) y[j]=0.0;
y[i]=0.0; for (j=0; j<n; j++) |
for (j=0; j<n; j++) { for (i=0; i<n; i++) {
| y[il += ali]l[jI*x[il;] y[i]l += ali]l[jI*x[il;
} }
<Row wise>:Natural <Column wise>: For Fortran language.

implementations. For C la |
B NAYKGEn to Parallel Programming for BT A A E RS —

Multico re/Manycore Clusters INFORMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Matrix-vector Multiplication
Case of <Row wise> Computation

<Row wise> Distribution : Good for row wise computation.

i i i i I I I
Gather all elements of the right hand

vector with MPI_Allgather between all Local matrix-vector multiplication
PEs in each PE.

<Colum wise> Distribution : Good for case that has whole elements of vectors .

+I+I+I

Local matrix-vector Summation with MPIl_Reduce.
multiplication in each PE. *all elements of vector are gathered in a PE.
24 Introductio?v]to F’arallel Programming for m BT A A E RS —
uItlcore/Manycore Clusters INFGRMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Matrix-vector Multiplication
Case of <Colum wise> computation

<Row wise> Distribution:Many communications, hence it may not be used.

PE=0
+8+0+ =

_Summation with MP|_Reduce.

iiiIiIIIIIIi ii

Gather all elements of right hand

vector with MPI_Allgather between all
PEs

<Colum wise> Distribution : Good for row wise distribution.

+.|\+N| +-‘\

Local matrix-vector multiplication Symmation with MP1_Reduce.

in each PE.

*all elements of vector are gathered in a PE.

25 Introduction to Parallel Programming for
Multicore/Manycore Clusters

RRKPEHREBE TS5 —

INFORMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

