
Introduction to
Parallel Processing

東京大学情報基盤中心 准教授 片桐孝洋

Takahiro Katagiri, Associate Professor,
Information Technology Center, The University of Tokyo

Introduction to Parallel Programming for
Multicore/Manycore Clusters

1

台大数学科学中心 科学計算冬季学校

Agenda
1. Basics of Parallel Programming
2. Metrics of Performance Evaluation
3. Data Distribution Methods

Introduction to Parallel Programming for
Multicore/Manycore Clusters

2

Basics of Parallel Programming

Introduction to Parallel Programming for
Multicore/Manycore Clusters

3

What is Parallel Programming?

 Making T / ｐ execution time for sequential programming
(execution time T) with p machines.

 It seems very easy.
 However, it depends on target process (algorithms).
 Part of sequential that cannot be parallelized.
 Communication overheads:
 Communication set up latency.
 Data transfer time.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

4

T

T / ｐ

Parallel and Concurrent
 Parallel
 Physically parallel (time independent)
 There are many things in a time.

 Concurrent
 Theoretical parallel (time dependent)
 There is one thing in a time (with a processor).

 Time division multiplexing, Pseudo Parallelization.
 Process scheduling by OS (Round-robin Scheduling)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

5

T

T

Classification of Parallel Computers
 Classification by Prof. Michael J. Flynn

(Stanford U.) (1966)

 SISD, Single Instruction Single Data Stream
 SIMD, Single Instruction Multiple Data Stream
 MISD, Multiple Instruction Single Data Stream
 MIMD, Multiple Instruction Multiple Data Stream

Introduction to Parallel Programming for
Multicore/Manycore Clusters

6

Classification of Parallel Computers
by Memory Types

1. Shared Memory Type
（SMP,
Symmetric Multiprocessor）

2. Distributed Memory Type
（Message Passing）

3. Distributed Shared Memory
Type
（DSM）

Introduction to Parallel Programming for
Multicore/Manycore Clusters

7

4. Shared and Unsymmetric
Memory Type
（ccNUMA,
Cache Coherent Non-
Uniform Memory Access）

Introduction to Parallel Programming for
Multicore/Manycore Clusters

8

Classification of Parallel Computers
by Memory Types

Relationships between Classification
of Parallel Computers and MPI
 Target of MPI is distributed memory parallel

computers.
 MPI defines communications between distributed

memories.

 MPI can apply shared memory parallel computers.
 MPI can perform process communication in shared

memory.

 Programming model with MPI is SIMD.
 Program with MPI is only one (= an instruction), but

there are several data in the program (such as arrays).

Introduction to Parallel Programming for
Multicore/Manycore Clusters

9

Models of Parallel Programming
 Behavers of actual programming are MIMD.
 But SIMD is basic model when we program.
 It is impossible to understand complex behavers.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

10

Models of Parallel Programming
 Parallel Programming Model in MIMD

1. SPMD（Single Program Multiple Data）
 A common program is copied to all processors when

starting parallel processing.

 Model of MPI (version 1)

2. Master / Worker（Master / Slave）
 One process （A Master） creates / deletes

multiple processes （Workers).
Introduction to Parallel Programming for

Multicore/Manycore Clusters
11

Kinds of Parallel Programming
 Multi Processes
 MPI （Message Passing Interface）
 HPF （High Performance Fortran）

 Fortran Compiler with Automatic Parallelization.

 Programmer describes data distribution explicitly.

 Multi Threads
 Pｔhread (POSIX threads)
 Solaris Thread (Sun Solaris OS)
 NT thread (Windows NT, After Windows95)

 Fork and Join are explicitly described for threads.

 Java
 Language specification defines threads.

 OpenMP
 Programmer describes lines of parallelization.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

12

Difference between process
and threads.
•Take care of shared memory
or not.

•Distributed Memory
> Process

•Shared Memory
> Thread

Multi processes and Multi threads
can be used simultaneously.
> Hybrid MPI / OpenMP executions.

Example of Parallel Processing (1)
 Data parallelism
 Parallelization to do data distribution.
 Data operation (= instruction) is same.
 Example of data parallelism: Matrix-Matrix Multiplication

Introduction to Parallel Programming for
Multicore/Manycore Clusters

13

















987
654
321

















123
456
789





















1*94*87*72*95*88*73*96*89*7
1*64*57*42*65*58*43*66*59*4
1*34*27*12*35*28*13*36*29*1

＝

















987
654
321

















123
456
789





















1*94*87*72*95*88*73*96*89*7
1*64*57*42*65*58*43*66*59*4
1*34*27*12*35*28*13*36*29*1

＝

 Parallelization
CPU０

CPU１

CPU２

Shared with all CPUs.

Parallel Computation: allocated data is different;
but computations are same.

As same as
SIMD

 Task Parallelism
 Parallelization by division of tasks (jobs)
 Operations of data (=Instructions) may be different.
 Example of task parallelism：Making Curry.

 Task1 : Cutting vegetables.
 Task2 : Cutting meat.
 Task3 : Boling water.
 Task4 ：Boiling vegetables and meat.
 Task5 : Stew with curry paste,

Introduction to Parallel Programming for
Multicore/Manycore Clusters

14

Task１

Task２

Task３

Task４ Task５

Time

Example of Parallel Processing (2)

 Paralle-
lization

Metrics of
Performance Evaluation

Metrics of parallelization

Introduction to Parallel Programming for
Multicore/Manycore Clusters

15

Metrics of Parallelization -Speedup ratio
 Speedup ratio
 Formula：
 ：Time for sequential. ：Execution with P machines.
 If we obtain with P machines, it is ideal speedup.
 If we obtain with P machines, it is super-linear speedup.

 Main reason is localizing data access, and ratio of cache hit increases. This
causes high efficiency of computation compared to sequential execution.

 Effectiveness of parallelization
 Formula：

 Saturation performance
 Limitation of speedup.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

16

)0(/ pPSP STTS 
ST PT

PSP 
PSP 

[%])0(100/ pPP EPSE 

Ｐ

Amdahl's law
 Let K be time of sequential computation. Let α be ratio of

parallelization in the sequential part.
 The speedup ratio can be calculated as:

 (Amdahl's law) With the above formula, we use processors
without limitation, such as （P→∞）, the limitation of
speedup ratio is:
 This indicates that if we can parallelize 90% of total part, and

without limitation of number of processors, the maximum
speedup is only: １/(１-0.9) = １0 Times!

> To establish high performance, efforts of higher efficiency of parallelization is
crucial. Introduction to Parallel Programming for

Multicore/Manycore Clusters
17

)1/(1 

)1)1/1(/(1))1(/(/1
))1(//(




PP
KPKKSP




Amdahl's law : An example

Introduction to Parallel Programming for
Multicore/Manycore Clusters

18

 Sequential Execution
Sequential part (1 Block) Parallel part (8 Blocks)

 Parallel Execution
(4 parallelisms)

 Parallel Execution
(8 parallelisms)

9/3=3 times

9/2=4.5 times ≠ 6 times

＝88.8% can be
parallelized

Basic Computations
 “Data structure” is important in sequential processing.
 “Data distribution” is important in parallel processing!

1. To improve “load balancing” between processes.
 “Load Balancing” : One of basic operations for parallel processing.
 Adjustment of grain of parallelism.

2. To improve “amount of required memory” between processes.
3. To reduce communication time after computations.
4. To improve “data access pattern” each process.

（= It is as same as data structure in sequential processing,.

 Data distribution methods
 < Dimension Level>： One Dimensional Distribution, Two Dimensional

Distribution.
 < Distribution Level>： Block Distribution, Cyclic Distribution.

19 Introduction to Parallel Programming for
Multicore/Manycore Clusters

One Dimensional Distribution

20

PE=0
PE=1
PE=2
PE=3

•(row wise) Block Distribution
•(Block, *) Distribution

•(row wise) Cyclic Distribution
•(Cyclic, *) Distribution

•(row wise) Block-cyclic Distribution
•(Cyclic(2), *) Distribution

N/4 rows

N/4 rows
N/4 rows
N/4 rows

N columns
1 row

2 rows

“2” in this case: <Block Length>
Introduction to Parallel Programming for

Multicore/Manycore Clusters

Two Dimensional Distribution

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

2 2 3 3 2 2 3 3

2 2 3 3 2 2 3 3

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

2 2 3 3 2 2 3 3

2 2 3 3 2 2 3 3
21

PE=0 PE=1

PE=2

•Block-Block Distribution
•(Block, Block) Distribution

•Cyclic-Cyclic Distribution
•(Cyclic, Cyclic) Distribution

•2 Dimensional Block-Cyclic Distribution
•(Cyclic(2), Cyclic(2)) Distribution

PE=3 0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

N/2

N/2

N/2 N/2

Introduction to Parallel Programming
for Multicore/Manycore Clusters

Computation with vectors
 In the following computation:

 , where α is a scalar, and ｚ, ｘ, and ｙ are vectors.

 This can be parallelized with arbitrary distributions.
 The scalar α is shared with all PEs.
 While amount of memory for

vectors is O(n), but that of
memory for scalar is only O(1).
→The amount of memory for
scalar can be ignored.

 Computation Complexity: O(N/P)
 It is easy, but not interesting.

yxaz 

＝ ＋

ｚ ｘ ｙα

22 Introduction to Parallel Programming for
Multicore/Manycore Clusters

Matrix-vector Multiplication
 <Row wise> and <Column wise> computations.
 Combination between <Data distributions> and <Computations>.

23

for(i=0;i<n;i++){
y[i]=0.0;
for(j=0;j<n;j++){

y[i] += a[i][j]*x[j];
}

}

<Row wise>：Natural
implementations. For C language.

<Column wise>： For Fortran language.

…

=… = …

for(j=0; j<n; j++) y[j]=0.0;
for(j=0; j<n; j++) {

for (i=0; i<n; i++) {
y[i] += a[i][j]*x[j];

}
}

…

①

②

①② ②②① ①

①

②

①

②

Introduction to Parallel Programming for
Multicore/Manycore Clusters

Matrix-vector Multiplication

24

Local matrix-vector multiplication
in each PE.

Gather all elements of the right hand
vector with MPI_Allgather between all
PEs

PE=0
PE=1
PE=2
PE=3

PE=0
PE=1
PE=2
PE=3

=

Local matrix-vector
multiplication in each PE.

=

Summation with MPI_Reduce.
*all elements of vector are gathered in a PE.

+ + +

Case of <Row wise> Computation
<Row wise> Distribution ：Good for row wise computation.

<Colum wise> Distribution ： Good for case that has whole elements of vectors .

Introduction to Parallel Programming for
Multicore/Manycore Clusters

Matrix-vector Multiplication

25

PE=0
PE=1
PE=2
PE=3

PE=0
PE=1
PE=2
PE=3

=

= + + +

Case of <Colum wise> computation
<Row wise> Distribution：Many communications, hence it may not be used.

= + + +

Introduction to Parallel Programming for
Multicore/Manycore Clusters

Gather all elements of right hand
vector with MPI_Allgather between all
PEs

Summation with MPI_Reduce.

<Colum wise> Distribution ： Good for row wise distribution.

Local matrix-vector multiplication
in each PE.

Summation with MPI_Reduce.
*all elements of vector are gathered in a PE.

