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Basics of Parallel Programming 
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What is Parallel Programming?

 Making T / ｐ execution time for sequential programming 
(execution time T ) with p machines.

 It seems very easy.
 However, it depends on target process (algorithms).
 Part of sequential that cannot be parallelized. 
 Communication overheads:
 Communication set up latency.
 Data transfer time.
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Parallel and Concurrent
 Parallel
 Physically parallel (time independent)
 There are many things in a time.

 Concurrent
 Theoretical parallel (time dependent)
 There is one thing in a time (with a processor).

 Time division multiplexing,  Pseudo Parallelization.
 Process scheduling by OS (Round-robin Scheduling)
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Classification of Parallel Computers
 Classification by Prof.  Michael J. Flynn 

(Stanford U.) (1966)

 SISD, Single Instruction Single Data Stream
 SIMD,  Single Instruction Multiple Data Stream
 MISD, Multiple Instruction Single Data Stream
 MIMD,  Multiple Instruction Multiple Data Stream
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Classification of Parallel Computers 
by Memory Types

1. Shared Memory Type
（SMP,
Symmetric Multiprocessor）

2. Distributed Memory Type
（Message Passing）

3. Distributed Shared Memory 
Type
（DSM）
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4. Shared and Unsymmetric 
Memory Type
（ccNUMA,
Cache Coherent Non-
Uniform Memory Access）
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Relationships between Classification 
of Parallel Computers and MPI
 Target of MPI is distributed memory parallel 

computers.
 MPI defines communications between distributed 

memories.

 MPI can apply shared memory parallel computers.
 MPI can perform process communication in shared 

memory.

 Programming model with MPI is SIMD. 
 Program with MPI is only one (= an instruction), but 

there are several data in the program (such as arrays).

Introduction to Parallel Programming for 
Multicore/Manycore Clusters

9



Models of Parallel Programming 
 Behavers of actual programming are MIMD. 
 But SIMD is basic model when we program.
 It is impossible to understand complex behavers. 
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Models of Parallel Programming 
 Parallel Programming Model in MIMD

1. SPMD（Single Program Multiple Data）
 A common program is copied to all processors when 

starting parallel processing.

 Model of MPI (version 1)

2. Master / Worker（Master / Slave）
 One process （A Master） creates / deletes 

multiple processes （Workers). 
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Kinds of Parallel Programming
 Multi Processes
 MPI （Message Passing Interface）
 HPF （High Performance Fortran）

 Fortran Compiler with Automatic Parallelization.

 Programmer describes data distribution explicitly. 

 Multi Threads
 Pｔhread (POSIX threads)
 Solaris Thread (Sun Solaris OS)
 NT thread (Windows NT, After Windows95)

 Fork and Join are explicitly described for threads.

 Java 
 Language specification defines threads.

 OpenMP
 Programmer describes lines of parallelization.
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Difference between process  
and threads.
•Take care of shared memory 
or not.

•Distributed Memory 
> Process

•Shared Memory
> Thread

Multi processes and Multi threads 
can be used simultaneously. 
> Hybrid MPI / OpenMP executions.



Example of Parallel Processing (1)
 Data parallelism
 Parallelization to do data distribution.
 Data operation (= instruction) is same.
 Example of data parallelism: Matrix-Matrix Multiplication
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 Parallelization
CPU０

CPU１

CPU２

Shared with all CPUs.

Parallel Computation: allocated data is different; 
but computations are same.

As same as 
SIMD 



 Task Parallelism
 Parallelization by division of tasks ( jobs ) 
 Operations of data (=Instructions) may be different.
 Example of task parallelism：Making Curry.

 Task1 : Cutting vegetables. 
 Task2 : Cutting meat.
 Task3 : Boling water. 
 Task4 ：Boiling vegetables and meat.
 Task5 : Stew with curry paste, 
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Task１

Task２

Task３

Task４ Task５

Time

Example of Parallel Processing (2)

 Paralle-
lization



Metrics of 
Performance Evaluation

Metrics of parallelization
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Metrics of Parallelization -Speedup ratio
 Speedup ratio
 Formula：
 ：Time for sequential. ：Execution with P machines. 
 If we obtain with P machines, it is  ideal speedup.
 If we obtain             with P machines,  it is super-linear speedup.

 Main reason is localizing data access, and ratio of cache hit increases. This 
causes high efficiency of computation compared to sequential execution.

 Effectiveness of parallelization 
 Formula：

 Saturation performance
 Limitation of speedup.
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Amdahl's law
 Let K be time of sequential computation. Let α be ratio of 

parallelization in the sequential part.
 The speedup ratio can be calculated as:

 (Amdahl's law) With the above formula, we use processors 
without limitation, such as （P→∞）, the limitation of 
speedup ratio is:
 This indicates that if we can parallelize 90% of total part, and 

without limitation of number of processors, the maximum 
speedup is only:   １/(１-0.9) = １0 Times!

> To establish high performance, efforts of higher efficiency of parallelization is 
crucial. Introduction to Parallel Programming for 

Multicore/Manycore Clusters
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Amdahl's law : An example
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 Sequential Execution
Sequential part (1 Block) Parallel part (8 Blocks)

 Parallel Execution
(4 parallelisms)

 Parallel Execution
(8 parallelisms)

9/3=3 times

9/2=4.5 times ≠ 6 times

＝88.8% can be 
parallelized 



Basic Computations
 “Data structure” is important in sequential processing.
 “Data distribution” is important in parallel processing!

1. To improve “load balancing” between processes.
 “Load Balancing” : One of basic operations for parallel processing.
 Adjustment of grain of parallelism.

2. To improve “amount of required memory” between processes. 
3. To reduce communication time after computations.
4. To improve “data access pattern” each process.

（= It is as same as data structure in sequential processing,.

 Data distribution methods
 < Dimension Level>： One Dimensional Distribution, Two Dimensional 

Distribution.
 < Distribution Level>： Block Distribution, Cyclic Distribution.
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One Dimensional Distribution 
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PE=0
PE=1
PE=2
PE=3

•(row wise) Block Distribution
•(Block, *) Distribution

•(row wise) Cyclic Distribution
•(Cyclic, *) Distribution

•(row wise) Block-cyclic Distribution
•(Cyclic(2), *) Distribution

N/4 rows

N/4 rows
N/4 rows
N/4 rows

N columns
1 row

2 rows

“2” in this case: <Block Length>
Introduction to Parallel Programming for 
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Two Dimensional Distribution

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

2 2 3 3 2 2 3 3

2 2 3 3 2 2 3 3

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

2 2 3 3 2 2 3 3

2 2 3 3 2 2 3 3
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PE=0 PE=1

PE=2

•Block-Block Distribution
•(Block, Block) Distribution

•Cyclic-Cyclic Distribution
•(Cyclic, Cyclic) Distribution

•2 Dimensional Block-Cyclic Distribution
•(Cyclic(2), Cyclic(2)) Distribution

PE=3 0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

N/2

N/2

N/2 N/2
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Computation with vectors
 In the following computation:

 , where α is a scalar, and ｚ, ｘ, and ｙ are vectors.

 This can be parallelized with arbitrary distributions. 
 The scalar α is shared with all PEs. 
 While amount of memory for 

vectors is O(n), but that of 
memory for scalar is only O(1).
→The amount of memory for 
scalar can be ignored. 

 Computation Complexity: O(N/P)
 It is easy, but not interesting.

yxaz 

＝ ＋
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Matrix-vector Multiplication
 <Row wise> and <Column wise> computations.
 Combination between <Data distributions> and <Computations>.

23

for(i=0;i<n;i++){
y[i]=0.0;
for(j=0;j<n;j++){

y[i] += a[i][j]*x[j];
}

}

<Row wise>：Natural 
implementations. For C language.

<Column wise>： For Fortran language.

…

=… = …

for(j=0; j<n; j++) y[j]=0.0; 
for(j=0; j<n; j++) { 

for (i=0; i<n; i++) {
y[i] += a[i][j]*x[j];

}
}

…

①

②

①② ②②① ①

①

②

①

②
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Matrix-vector Multiplication
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Local matrix-vector multiplication 
in each PE.

Gather all elements of the right hand 
vector with  MPI_Allgather between all 
PEs

PE=0
PE=1
PE=2
PE=3

PE=0
PE=1
PE=2
PE=3

=

Local matrix-vector 
multiplication in each PE.

=

Summation with MPI_Reduce.
*all elements of vector are gathered in a PE.

+ + +

Case of <Row wise> Computation
<Row wise> Distribution ：Good for row wise computation. 

<Colum wise> Distribution ： Good for case that has whole elements of vectors .
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Matrix-vector Multiplication
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PE=0
PE=1
PE=2
PE=3

PE=0
PE=1
PE=2
PE=3

=

= + + +

Case of <Colum wise> computation
<Row wise> Distribution：Many communications, hence it may not be used.

= + + +
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Gather all elements of right hand 
vector with  MPI_Allgather between all 
PEs

Summation with MPI_Reduce.

<Colum wise> Distribution ： Good for row wise distribution.

Local matrix-vector multiplication 
in each PE.

Summation with MPI_Reduce.
*all elements of vector are gathered in a PE.


