
Parallelization of
Dense Matrix-Vector Multiplications

東京大学情報基盤中心 准教授 片桐孝洋

Takahiro Katagiri, Associate Professor,
Information Technology Center, The University of Tokyo

Introduction to Parallel Programming for
Multicore/Manycore Clusters

1

台大数学科学中心 科学計算冬季学校

Agenda
1. Execute sample program of dense

matrix-vector multiplications
2. Note of Parallelization
3. Lesson of Parallelization
4. Lessons and Homework

Introduction to Parallel Programming for
Multicore/Manycore Clusters

2

Execute Sample Program of
Parallelization of

Dense Matrix-Vector Multiplications

Introduction to Parallel Programming for
Multicore/Manycore Clusters

3

Commands of EMACS
 C- : With Control Key

 M- : With Esc Key

 C-x C-s : Save text

 C-x C-c : Exit

 C-g : Reset mode. In case of that If you are confusing.

 C-k : Delete one line, and the line is stored in a buffer. You can delete
multiple lines to memorize the buffer.

 C-y : Copy contents of the above buffer to location of current cursor.

 C-s : Search input character stream, and move to location of that. Move
next candidate if you enter “C-s”. For debugging, you can use this to input
name of functions that you want to search.

 M-x goto-line : Go to line you want. After entering the command, system
asks you the number of line.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

4

Note: Sample program of dense matrix-
vector multiplications
 File name for C/Fortran languages:

Mat-vec-fx.tar
 Change queue name from lecture to lecture6

in job script file “mat-vec.bash”. Then type “pjsub” to
submit the job.
 lecture : Queue name in out of time of this lecture.
 lecture6 : Queue name in time of this lecture.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

5

Execute Sample Program of Parallelization
of Dense Matrix-Vector Multiplications
 Type the following commands:

$ cp /home/z30082/Mat-vec-fx.tar ./
$ tar xvf Mat-vec-fx.tar
$ cd Mat-vec

 Choose the follows:
$ cd C : For C language.
$ cd F : For Fortran.

 The follows are common.
$ make
$ pjsub mat-vec.bash

 After finalizing execution, type the follow:
$ cat mat-vec.bash.oXXXXXX

Introduction to Parallel Programming for
Multicore/Manycore Clusters

6

Output (C Language)
 If it runs successfully, then you see the

followings.

N = 10000
Mat-Vec time = 0.171097 [sec.]
1168.927027 [MFLOPS]
OK!

Introduction to Parallel Programming for
Multicore/Manycore Clusters

7

Output (Fortran Language)
 If it runs successfully, then you see the

followings.

N = 10000
Mat-Vec time[sec.] = 0.1665926129790023
MFLOPS = 1200.533420532020
OK!

Introduction to Parallel Programming for
Multicore/Manycore Clusters

8

Explanation of the sample program
(C Language)
 #define N 10000

By varying the number, you can change matrix size.

 #define DEBUG １
With compiling with “１”, you can verify computation
error with a test matrix.

 Recompiling can be adapted by:
% make clean
% make

Introduction to Parallel Programming for
Multicore/Manycore Clusters

9

Explanation of the sample program
(Fortran Language)
 Declaration of size of matrix NN is located in

the following file:
mat-vec.inc

 You can change size of matrix by changing the
following ＮＮ:

integer NN
parameter (NN=10000)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

10

Homework 2
Parallelize loop in MyMatVec function
(procedure).
For debugging, you use:
#define N 192
to reduce execution time.

In addition, you need to specify:
#define DEBUG １
to verify result.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

11

Note: To do Homework (1/2)
 Start with distributed data for each process.

No need to implement data distribution.
 The follows are explanation of program for verification：
 Elements of matrices and vector are set to “1”, if you use the

verification.
 If you do not use the verification, the elements are set with

random number in this sample program.
 The program do not support same sequences of random number in each

process.
 If you want to use random matrix, you need to use same sequences of

random number to sequential execution.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

12

Note: To do Homework (2/2)
 In this homework,

we DO NOT NEED MPI communication functions.
 In this sample program,

parallelization of verification part is not
implemented.

Hence, you need an extra parallelization for the
verification part, in addition to the part of MatVec
function to pass the verification.
Parallelization of the verification is as same way as part

of MatVec part.
Introduction to Parallel Programming for

Multicore/Manycore Clusters
13

Confirmation of MPI Parallelization
(Again)

 SPMD
 Target program (mat-vec.c, mat-vec.f) is:
 used for all processes, and
 invocated simultaneously,

in time of starting.

Distributed Memory Parallel Computers
 In each process, there is an independent

memory. This is NOT shared memory.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

14

TIPS for the sample program
 myid and numprocs are global variables.
 myid (= my identification number)
 numprocs (= number of all processes in the

communicator).
: These variables can be used without declaration
inner MyMatVec function.

 myid and numprocs should be used to
parallelize the program.
 To parallelize MyMatVec function, using myid and

numprocs is needed.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

15

Idea of Parallelization (C Language)
 By using SIMD concepts (in 4 processes)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

16

for (j=0; j<n; j++)
{ DOT(j, i) }

PE0

for (j=0; j<n/4; j++) { DOT(j, i) }

PE１

for (j=n/4; j<(n/4)*2; j++) { DOT(j, i) }

PE2

for (j=(n/4)*2; j<(n/4)*3; j++) { DOT(j, i) }

PE3

for (j=(n/4)*3; j<n; j++) { DOT(j, i) }

It owns all
elements
redundantly
for
each process.

Matrix A

Vector ｘ

n

n

 By using SIMD concepts (in 4 processes)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

17

do j=1, n
DOT(j, i)

enddo

PE0

do j=1, n/4
DOT(j, i)

enddo

PE１

do j=n/4+1, (n/4)*2
DOT(j, i)

enddo

PE2

do j=(n/4)*2+1, (n/4)*3
DOT(j, i)

enddo

PE3

do j=(n/4)*3+1, n
DOT(j, i)

enddo

Matrix A

Vector ｘ

n

n

Idea of Parallelization
(Fortran Language)

It owns all
elements
redundantly
for
each process.

ＰＥ０ ＰＥ３ＰＥ２ＰＥ１

Note: Points to parallelization for
beginners
 An independent array is allocated in each process.

 Value of myid is fixed after calling MPI_Comm_rank()
function.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

18

Ａ［N］［N］ Ａ［N］［N］ Ａ［N］［N］ Ａ［N］［N］

ＰＥ０ ＰＥ３ＰＥ２ＰＥ１

myid = 0 myid = １ myid = 2 myid = 3

Strategy of parallelization
(C Language)
1. Let matrix A with N×N be allocated, and vectors x and

y with N be allocated for each process.
2. Modify initial numbers of loop for starting and ending to

compute allocated region.
 If we use block distribution, we obtain:

（In case of that n can be devisable for numprocs. ）
ib = n / numprocs;
for (j=myid*ib; j<(myid+１)*ib; j++) { … }

3. (After finalizing parallelization of step 2) modify
memory allocation for arrays to have allocated data
only. Then modify loops to compute it.

 For the above loop, we can adapt as follows:
for (j=0; j<ib; j++) { … }

Introduction to Parallel Programming for
Multicore/Manycore Clusters

19

Strategy of parallelization
(Fortran Language)
1. Let matrix A with N×N be allocated, and vectors x and

y with N be allocated for each process.
2. Modify initial numbers of loop for starting and ending to

compute allocated region.
 If we use block distribution, we obtain:

（In case of that n can be devisable for numprocs. ）

ib = n / numprocs
do j=myid*ib+１, (myid+１)*ib …. enddo

3. (After finalizing parallelization of step 2) modify
memory allocation for arrays to have allocated data
only. Then modify loops to compute it.

 For the above loop, we can adapt as follows:
do j=１, ib …. enddo

Introduction to Parallel Programming for
Multicore/Manycore Clusters

20

Strategy of parallelization
(C Language)
 In case of having all elements of matrix A with N×N:

Introduction to Parallel Programming for
Multicore/Manycore Clusters

21

PE0

PE１

PE2

PE3

for (j=0; j<(n/4); j++) { DOT(j, i) }

for (j=(n/4); j<(n/4)*2; j++) { DOT(j, i) }

for (j=(n/4)*2; j<(n/4)*3; j++) { DOT(j, i) }

for (j=(n/4)*3; j<n; j++) { DOT(j, i) }

Note: there is region that is not access in each PE, but it can be easily implemented
due to easy specification of length of loops.

Strategy of parallelization
(Fortran Language)
 In case of having all elements of matrix A with N×N:

Introduction to Parallel Programming for
Multicore/Manycore Clusters

22

PE0

PE１

PE2

PE3

do j=1, n/4
DOT (j, i)

enddo

do j=n/4+1, (n/4)*2
DOT (j, i)

enddo

do j=(n/4)*2+1, (n/4)*3
DOT (j, i)

enddo

do j=(n/4)*3+1, n
DOT (j, i)

enddo

Note: there is region that is not access in each PE, but it can be easily implemented
due to easy specification of length of loops.

Strategy of parallelization
(Dense matrix-vector multiplications)
 In this strategy, vector y for y = Ａ ｘ is partially

calculated in each PE as follows.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

23

PE0

PE１

PE2

PE3

＝

＝

＝

＝

Note: Parallel Environment
 192 processes can be used in the lecture

environment.
 To verify result, use debug function that is

including in sample program.
 There may have a bug that you think that parallelizing is finished.
 For the sample program in initial state, all elements of y are

stored in rank #0, since it is sequential program. Hence:

Parallelize verification processes with
respect to loop of sequential execution.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

24

In case that N is not divisible for
the number of processors
 If N is not divisible for 192 which is maximum number

of cores in the lecture environment, then we need to
set end index of loop to rank #191, such as:
ib = n / numprocs;
if (myid == (numprocs - １)) {

i_end = n;
} else {

i_end = (myid+１)*ib;
}
for (i=myid*ib; i<i_end; i++) { … }

Introduction to Parallel Programming for
Multicore/Manycore Clusters

25

An extended implementation
(In case of having distributed data only.)

 In case of having distributed data only, we need to know:
 Local index from 1 to n/192, or 0 to (n/192+(N-(N/192)*192)))
 Global index from 0 to N:
After gathering data of vector x, we need to access vector x

with:
A, y: access for local index.
x: access for global index.

 If we use block distribution, it is easy to implement it.
 If we use cyclic distribution, we need something to consider:
By using modulo function (a%b).

Introduction to Parallel Programming for
Multicore/Manycore Clusters

26

Lessons
1. Compare performance of row-wise computation and

column-wise computation for dense matrix-vector
multiplication. It is not needed to parallelize the code.

2. [Homework 2] Parallelize the sample program. You can
allocate matrix A with N×N, and vectors x and y with N
for each process.

3. Parallelize sample program. In this lesson, you can only
allocate distributed data for matrix A, and vectors x and y.
Hence, total amount of memory for each process is
reduced with 1/192 compared to that of sequential. You
can use extra work area for parallelization if you need.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

27

Lessons

4. After parallelizing, make a parallel code that can
execute pure MPI and hybrid MPI execution.
Evaluate performance with the code with respect to
environmental condition, such as maximum12 nodes
(192 cores).

 There are many combinations for hybrid MPI. In case of 12
processes MPI execution, we can execute a 1 MPI+16 OpenMP
threads/node, 2 MPIs + 8 OpenMP threads/node, and 4 MPIs +
4 OpenMP threads/node, etc.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

28

Answer codes of hybrid MPI/OpenMP
for matrix-vector multiplication

Introduction to Parallel Programming for
Multicore/Manycore Clusters

29

Answer Code of dense matrix-vector
multiplications (Hybrid MPI/OpenMP)
 File name of C/Fortran languages for answer codes of Hybrid

MPI/OpenMP:
Mat-vec-fx_ans.tar

 Change queue name from lecture to lecture6 in job script files.
 The job script files are as follows:
 mat-vec.bash.P192T1 : Sample job script of Pure MPI.
 mat-vec.bash.P96T8 : Sample job script of Hybrid MPI with

96 MPIs + 8 Threads/MPI.
 mat-vec.bash.P12T16 : Sample job script of Hybrid MPI with

12 MPIs + 16 Threads/MPI.
 Then type “pjsub” to submit the job.

 lecture : Queue name in out of time of this lecture.
 lecture6 : Queue name in time of this lecture.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

30

Execute Answer Program of Parallelization
of Dense Matrix-Vector Multiplication

 Type the following commands:
$ cp /home/z30082/Mat-vec-fx_ans.tar ./
$ tar xvf Mat-vec-fx_ans.tar
$ cd Mat-vec

 Choose the follows:

$ cd C : For C language.
$ cd F : For Fortran.

 The follows are common.
$ make

 After finalizing execution, type the follow. This is in case of Hybrid MPI/OpenMP
execution with 12 MPIs + 16 Threads/MPI.
$ cp ./mat-vec.bash.P12T16 ./mat-vec.bash

 Modify queue name in mat-vec.bash.
$ pjsub mat-vec.bash

Introduction to Parallel Programming for
Multicore/Manycore Clusters

31

