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Target Machine of OpenMP
 OpenMP is designed for shared memory parallel 

machine.
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What is OpenMP?
 OpenMP (OpenMP C and C++ Application Program Interface 

Version １.0) is a standard specification for programs on 
shared memory parallel machines in the follows: 
1. Directives,
2. Libraries, and 
3. Environmental Variables. 

 Programmer specifies directives to parallelize own codes. 
It is not compiler with automatic parallelization.  

 Programming with OpenMP is easier than that with MPI, 
since there is no cost of data distribution.
But there is a limitation of scaling up. 
(See parallelism inside node.)
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OpenMP and Multicore Parallel 
Machines (1/2)

 OpenMP is a programming model for thread parallelization. 
 OpenMP is well suited for current multicore parallel machines. 

 Experimental Performance： good for parallel execution less than 8 threads.
 Highly programming effort is needed to obtain high parallel efficiency if we use 

more than 8 threads. 
1. Low performance of data transfer from main memory to cache. 
2. There is no parallelism in target program. 

 OpenMP cannot parallelize programs with internode 
communications.
 MPI is used to implement internode parallelization. 
 Only thread parallelization is supported for automatic parallelization compilers. 

 It supports internode parallelization for HPF. In research level, XcalableMP(Tsukuba U. 
and RIKEN AICS) can parallelize sequential program to parallel program with  
internode communication. However, XcalableMP is not widely supported for CPUs.
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OpenMP and Multicore Parallel 
Machines (2/2)

 Typical Number of Threads
 16 Threads / Node

 The Fujitsu PRIMEHPC FX10  （Sparc64 IVfx）

 32 - 128 Threads / Node
 Fujitsu FX100 (Sparc64 VIfx)
 HITACHI SR16000 (IBM Power7)
 32 Physical cores, 64 - 128 Theoretical Cores (with SMT)

 60 - 240 Threads / Node
 Intel Xeon Phi (Intel MIC(Many Integrated Core) , Knights Conner)
 60 Physical Cores,  120 – 240 Theoretical Cores (with HT)

 OpenMP execution with 100 threads or more is pervasive. 
 To establish high performance, much effort of programming is 

required. 
Introduction to Parallel Programming for 
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Basics of OpenMP Directives

 In C Language:
Comments with 
#pragma omp 

 In Fortran Language:
Comments with
!$omp
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How to compile program with OpenMP
 Add option for OpenMP to compiler for sequential.

 e.g.) Fujitsu Fotran90 Compiler 
frt –Kfast,openmp foo.f

 e.g.） Fujitsu C Compiler
fcc –Kfast,openmp foo.c

 Loops without OpenMP directives are sequential.
 Some compilers support automatic parallelization of threads in 

addition to parallelization with OpenMP. However, this depends on 
vendors. 
 Lines with OpenMP directives are parallelized with OpenMP threads, and lines 

without OpenMP directives are parallelized with automatic parallelization of 
threads by compiler.    

 e.g.) Fujitsu Fortran90 Compiler 
frt –Kfast,parallel,openmp foo.f
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How to execute executable files of OpenMP
 Specify the file name in command line.
 Number of processes can be specified with environmental 

variable OMP_NUM_THREADS
 e.g.) In case that executable file is “a.out”.

$ export OMP_NUM_THREADS=１6
$ ./a.out

 Note
 Execution speeds between sequential comping and OpenMP compiling 

with OMP_NUM_THREADS=１ may different. 
(Execution with OpenMP compiling is slower.) 
 The main reason is additional processes for OpenMP parallelization 

(overheads).
 With highly thread execution, the overheads become remarkable.  
 It is possible to improve performance by implementation of codes.

Introduction to Parallel Programming for 
Multicore/Manycore Clusters

8



Execution model of OpenMP
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Model of OpenMP（C Language）
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Block A
#pragma omp parallel
｛

Block B
｝

Block C

OpenMP Directive

Block Ａ

Block B Block B Block B…

Block C

Fork the threads

Thread #0
（Master Thread） Thread #1 Thread # p

Join the threads
* The number of thread p is 

specified with environmental values  
OMP_NUM_THREADS



Model of OpenMP（Fortran Language）
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Block A
!$omp  parallel

Block B
!$omp  end parallel

Block C

OpenMP Directive

Block A

Block B Block B Block B…

Block C

Fork the threads

Thread #0
(Master Thread) Thread #1 Thread #p

Join the threads
* The number of thread p is 

specified with environmental values  
OMP_NUM_THREADS



Work Sharing Construct 
 The process of parallel description by OpenMP with multiple 

threads, such as Block B for the parallel construct, is called 
Parallel Region.

 OpenMP construct that specify parallel region, and execute 
parallel between threads is Work Sharing Construct. 

 The work sharing construct provides the followings:
1. Described in parallel region:

 for construct. ( do construct )
 sections construct.
 single construct. ( master construct ), etc. 

2. With parallel construct: 
 parallel for construct. ( parallel do construct. )
 parallel sections construct, etc. 
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Typical Constructs
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for construct (do construct)
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#pragma omp parallel for
for (i=0; i<100; i++){
a[i] = a[i] * b[i];

}
Upper Process

for (i=0; i<25; i++){
a[i] = a[i] * b[i];

}

for (i=25; i<50; i++){
a[i] = a[i] * b[i];

}

Lower Process

Fork the threads

Thread #0 Thread #1 Thread #3

Join the threads

Thread #2
for (i=50; i<75; i++){

a[i] = a[i] * b[i];
}

for (i=75; i<100; i++){
a[i] = a[i] * b[i];

}

Users must verify 
collect results 
in parallel compared 
to results in sequential.

* In Fortran Language : 
!$omp  parallel  do
…
!$omp end parallel do



Cases that cannot specify for construct
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for (i=0; i<100; i++) {
a[i] = a[i] +1;
b[i] = a[i-1]+a[i+1];

}

•The results differ from 
sequential
(See a case that 
a[i-1] is not updated, 
and read it in a thread. )

for (i=0; i<100; i++) {
a[i] = a[ ind[i] ];

}

•It depends on contents of 
ind[i] that whether it can 

parallelize or not.
•If all a[ind[i]] are 
not updated in parallel,
the loop can be parallelized.



sections construct
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#pragma omp parallel sections
{  
#pragma omp section

sub1();
#pragma omp section

sub2();
#pragma omp section

sub3();
#pragma omp section

sub4();
}

sub1();
Thread #0 Thread #1 Thread #3Thread #2

sub2(); sub3(); sub4();

Case that number of threads is 4. 

sub1();

Thread #0 Thread #1 Thread #2

sub2(); sub3();

sub4();

Case that number of threads is 3.

In Fortran Language: 
!$omp parallel sections
…
!$omp end parallel sections



critical construct
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#pragma omp critical
{

s =  s +  x; 
}

s =  s + x

Thread #0 Thread #1 Thread #3Thread #2

s =  s + x

s =  s + x

s =  s + x

In Fortran Language:
!$omp critical
…
!$omp end critical



private clause
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#pragma omp parallel for private(c)
for (i=0; i<100; i++){
a[i] = a[i] + c * b[i];

}

Upper process

for (i=0; i<25; i++){
a[i] = a[i] + c0*b[i];

}

for (i=25; i<50; i++){
a[i] = a[i] + c1*b[i];

}

Lower process

Fork the threads
Thread #0 Thread #1 Thread #3

Join the threads

Thread #2
for (i=50; i<75; i++){

a[i] = a[i] + c2*b[i];
}

for (i=75; i<100; i++){
a[i] = a[i] + c3* b[i];

}

The variable c is 
allocated in each thread.
(This indicates different 
variables in each threads.) 

If we use value of c that is defined 
before the loop,  firstprivate(c)
is needed to specify.



A Note of private clause (C Language)
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#pragma omp parallel for private( j )
for (i=0; i<100; i++) {
for (j=0;  j<100; j++) {

a[ i ] = a[ i ] + amat[ i ][ j ]* b[ j ];
}

•Loop induction variable ｊ is allocated as different variable 
in each thread.
•If private( j ) is not specified, j is summed up simultaneously 
between all threads, then we obtain different result from 
sequential result.  



A Note of private clause (Fortran Language)
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!$omp parallel do private( j )
do i=1, 100

do j=1,  100
a( i ) = a( i ) + amat( i , j ) * b( j )

enddo
enddo
!$omp end parallel do

•Loop induction variable ｊ is allocated as different variable 
in each thread.
•If private( j ) is not specified, j is summed up simultaneously 
between all threads, then we obtain different result from 
sequential result.  



reduction clause
(C Language)

 In case to obtain a result to sum results of parallel execution 
in each thread, such as dot product. 
 Without reduction clause,  ddot is defined as a shared variable, 

then parallel summations perform in each thread. This causes 
wrong answer to result in sequential. 
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#pragma omp parallel for reduction(+, ddot )
for (i=1; i<=100; i++) {

ddot += a[ i ] * b[ i ]
}
ddot can only specify “scalar” variable. 
It is not allowed to specify array. 



reduction clause
(Fortran Language)
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!$omp parallel do reduction(+, ddot )
do i=1, 100

ddot = ddot + a(i) * b(i)
enddo
!$omp end parallel do

 In case to obtain a result to sum results of parallel execution 
in each thread, such as dot product. 
 Without reduction clause,  ddot is defined as a shared variable, 

then parallel summations perform in each thread. This causes 
wrong answer to result in sequential. 

ddot can only specify “scalar” variable. 
It is not allowed to specify array. 



A note of reduction clause
 reduction clause performs exclusively hence performance goes to 

down.
 In our experience, it causes heavy speed down in case of more than 8 threads.

 The following implementation that allocates array of ddot for 
summation may be fast. ( This depends on size of loop, and hardware architecture) 

Introduction to Parallel Programming for 
Multicore/Manycore Clusters

23

!$omp parallel do private ( i ) 
do j=0, p-１
do i=istart( j ), iend( j )

ddot_t( j ) = ddot_t( j ) + a(i) * b(i)
enddo

enddo
!$omp end parallel do
ddot = 0.0d0
do j=0, p-１

ddot = ddot + ddot_t( j )
enddo

Making loop length according to threads：
Maximum p threads.

Loop lengths are set with respect to each PE in advance.

Local array ddot_t() for computation of 
ddot is allocated in advance. 
(initialized by 0)

Sequential summation. 



Other OpenMP Functions
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Obtaining Maximum Number of 
Threads
 To obtain maximum number of threads, we use 

omp_get_num_threads().
 Type is integer (Fortran Language), int (C Language).
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use omp_lib
Integer nthreads

nthreads = omp_get_num_threads()

 e.g.) Fortran90
#include <omp.h>
int nthreads;

nthreads = omp_get_num_threads();

 e.g.) C Language



Obtaining own identification number of 
threads
 To obtain own identification number of threads, we use

omp_get_thread_num().
 Type is integer (Fortran Language), int (C Language).
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use omp_lib
Integer myid

myid = omp_get_thread_num()

 e.g.) Fortran90
#include <omp.h>
int myid;

myid = omp_get_thread_num();

 e.g.) C Language



Time Measurement Function
 To obtain elapse time, we use omp_get_wtime().
 Type is double precision (Fortran Language), double (C

Language).
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use omp_lib
double precision dts, dte

dts = omp_get_wtime()
対象の処理

dte = omp_get_wtime()
print *, “Elapse time [sec.] =”,dte-dts

 e.g.) Fortran90
#include <omp.h>
double dts, dte;

dts = omp_get_wtime();
対象の処理

dte = omp_get_wtime();
printf(“Elapse time [sec.] = %lf ¥n”,

dte-dts);

 e.g.) C Language



Other Constructs
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single construct
 A block specified by single construct is 

allocated to a thread. 
 It is not predictable which thread should be allocated.
 Except for using nowait construct, a synchronization is inside. 
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#pragma  omp  parallel for
｛

Block A
#pragma omp single 
{ Block B }
…
}

Upper Process  

Block A Block A Block A…

Fork the threads
Thread #0
（Master Threads）

Thread #1 Thread #p

synchronization
Block B

In Fortran language:
!$omp single
…
!$omp end single



master construct
 Using master construct is as same as single

construct.  
 Difference is: it is allocated for master thread that 

process specified by master construct, for 
example, Block B in the previous figure.

 There is no synchronization after finishing the 
region. 
 Due to that, the execution speeds up in some cases. 
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flush construct
 Keep consistency with contents in physical memory
 Variables specified by flush construct are consistent in the location. 

The other variables are not consistent from contents in memory. 
 Computed results are store in registers.  The results do not be stored in 

memory.
 Hence results are different every execution if we do not specify flush construct. 
 The following constructs are automatically include flush construct.

 barrier construct,  enter and out of critical, out of parallel.
 Out of for, sections, and single constructs are implicitly flushed. 

 Using flush construct makes performance down. Try to avoid using it.
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#pragma omp flush (Lists of variables) 
If lists of variable are 
omitted, all variables
are specified.



threadprivate construct
 Declare private variables in each thread, but the variables can be accessed in global.  

 It is good for declaration of global variables which have different values in each thread. 
 For example, define different values of start and end of loops in each thread. 
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…
void main() {
…
#pragma omp parallel private (myid, nthreds, 
istart, iend)   {

nthreds = omp_num_threds();
myid = omp_get_thread_num();
istart = myid * (n/nthreads);
iend = (myid+１)*(n/nthreads);
if (myid == (nthreads-１)) {

nend = n;  
}
kernel();

}

#include <omp.h>
int myid, nthreds, istart, iend;
#pragma omp threadprivate (istart, 
iend)
…
void kernel() {

int i;
for (i=istart; i<iend; i++) {

for (j=0; j<n; j++) {
a[ i ] = a[ i ] + amat[ i ][ j ] * b[ j ];

}
}

}
…

Global variables which allocate 
in each thread are specified 
in parallel construct.  



Scheduling
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What is scheduling? (1/2)
 In parallel do construct ( parallel for construct ),  it divides 

length of target loop, such as from 1 to n,  as continual manner, 
and it allocates the divided lengths to all threads.  
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1 n

 If computational loads allocated in each iteration are not 
balanced,  parallel efficiency goes poor. 

1 n

Thread #0 Thread #1 Thread #2 Thread #3 Thread #4

Thread #0 Thread #1 Thread #2 Thread #3 Thread #4

Computational
Loads

Loop increase
( Iteration Space )



What is scheduling? (2/2)
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 To improve load balancing, sizes of allocated loop are 
shorten, and allocate them with cyclic manner.

1 n

 Optimal size of the allocated loop (we call this chunk size) 
depends on computer hardware and target process.  

 There is a clause to do the above allocation in OpenMP.

Computational
Loads



Loop scheduling and Its clause
(1/3)
 schedule (static, n)
 Divide loop with chunk size, and allocate them cyclic manner 

from thread #0, such as (thread #0, thread #1, …). This is called 
round-robin allocation. We can specify chunk size to n.

 Without schedule clause (default), static is specified with loop 
length / number of threads as its chunk size. 
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Loop scheduling and Its clause
(2/3)
 schedule(dynamic, n)
 Loop length is divided by chunk size, and the allocation is 

performed by thread that finishes execution, in first come, first 
served manner.

 We can specify chunk size to n.
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Thread #0 Thread #1 Thread #2 Thread #3



Loop scheduling and Its clause
(3/3)
 schedule(guided, n)

 First, loop length is divided by chunk size, and the allocation is performed 
by thread that finishes execution in first come, first served  manner. The 
divided loop length is getting smaller according to loop count. We can 
specify first chunk size to n.

 If specified chunk size is 1, chunk size is specified with remainder loop length / 
number of threads.

 Chunk size is exponentially reduced toward to 1.
 If we specify k > 1 to chunk size, the chunk size is exponentially reduced toward to 

k. The last size of chunk may be smaller than k.
 If chunk size is not specified, the chunk size is set to 1.
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How to use loop schedule clause?
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!$omp parallel do private( j, k ) schedule(dynamic,１０)
do i=１, n

do j=indj(i), indj (i+１)-１
y( i ) = amat( j ) * x( indx( j ) )

enddo
enddo
!$omp end parallel do

 Fortran90 Language

C Language #pragma omp parallel for private( j, k ) schedule(dynamic,１０)
for (i=0; i<n; i++) {

for ( j=indj(i); j<indj (i+１); j++) {
y[ i ] = amat[ j ] * x[ indx[ j ]];

}
}



A Note of schedule clause in Programming
 Chunk size of dynamic and guided affects performance.

 If we specify too small chunk size, we obtain nice load balancing, but system 
overhead is increase. 

 On the other hand, if we specify too big chunk size, we obtain bad load 
balancing, but system overhead is reduced. 

 Hence there is tread-off.
 The tuning of chunk size at run-time is required; hence cost of tuning is 

increasing. 

 High performance implementation with static clause only. (in 
some case)
 There is no system overhead for static clause while there is system 

overhead for dynamic clause. 
 Implementation with static clause with the best loop length in advance is 

the best in some cases. However, cost of programming is increase. 
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An Example of Load Balancing with only 
static clause
 Apply to sparse matrix-vector product.
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!$omp parallel do private(S,  J_PTR,I)
DO K=１, NUM_SMP

DO I=KBORDER(K-１)+１, KBORDER(K)
S=0.0D0
DO J_PTR=IRP(I), IRP(I+１)-１

S=S + VAL( J_PTR ) * X(ICOL( J_PTR))
END DO
Y(I)=S

END DO
END DO

!$omp end parallel do

Loop for number of threads:
To know loop length for each 

thread.

Loop length for each thread by 
execution in advance:

Non-uniform length for each 
thread is specified.

Problem that can be load balancing with continues 
loop in each thread before execute-time is adaptable 
of this implementation.
:It cannot use a case that  load varies 
dynamically.



Notes to Programming with 
OpenMP (General Matters)
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A Note of Programming with OpenMP
 Main work of parallelization with OpenMP is:

 To parallelize program with parallel construct 
to simple for loop.

 Parallelizing complex loops with OpenMP lacks merit of 
OpenMP, since it requires high cost of programming.

 To establish the above, the parallelization with parallel
construct needs to understand:

Correct use of private clause
to avoid bugs.
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A Note of private clause (1/2)
 Variables are treated as shared in default except for 

declaring variables with private clause. 
 The default variables do not allocated in each thread.
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!$omp parallel do
do i=1, 100

do j=1,  100
tmp = b(i) + c(i) 
a( i ) = a( i ) + tmp

enddo
enddo
!$omp end parallel do

 e.g.) Shared variables for loop induction variables.

Only the variable i is allocated in a private without declaration. 

The variable j is allocated in a shared without private clause. 
←Addition is done with fast come fast served manner. 
←A bug occurs at run-time.

The variable tmp is allocated in a shared without private clause. 
← Substitution is done with fast come fast served manner. 
←A bug occurs at run-time.



A Note of private clause ( 2/2 )
 If you make a function for target process and increase 

arguments to the function to reduce number of variables 
should be described in private clause, you may obtain no 
effect of thread parallelization due to high overhead of the 
function calling.
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!$omp parallel do
do i=1, 100

call foo(i,arg1,arg2,arg3,
arg4,arg5, ….., arg100)

enddo
!$omp end parallel do

 e.g.) Too many arguments of function.
Arguments of function are treated as private, 
hence number of variables for private clause 
can be reduced. 
← But, the overhead of calling is increase. 
← Speedup factor is limited due to 

high calling overhead of function 
when thread execution. 

*A solution: 
Using global variables to reduce arguments.  



Summary of Notes of private clause
 In OpenMP,  all variables without declaration are shared 

variables. 
 Global variables in C language, and variables declared by 

common in Fortran are also shared variables. 
 To make private variables, declaration with “Threadprivate” is 

needed.

 If a case to parallelize the outer loop with parallel
construct: 
 Variables declared in calling functions (or procedures) inside a 

loop are private. 
 In C language, explicit declarations inside a loop are private.

 e.g.) int a;
Introduction to Parallel Programming for 
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A Note of Nested Loops for 
parallel construct ( 1/2 ) ）

 We can separate parallel construct with do.  

 If target is one loop, there is compiler to generate code with lower performance 
to non-separated code.  One of the reasons is: the compiler makes a code with 
fork in separated part in every iteration. However, there is a case that totally 
opposite case. Hence we need to check both performance. 
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!$omp parallel
!$omp do private(j,tmp)
do i=1, 100

do j=1,  100
tmp = b( ｊ ) + c( ｊ ) 
a( i ) = a( i ) + tmp

enddo
enddo
!$omp end do
!$omp end parallel

!$omp parallel do private(j,tmp)
do i=1, 100

do j=1,  100
tmp = b( ｊ ) + c( ｊ ) 
a( i ) = a( i ) + tmp

enddo
enddo
!$omp end parallel do

If target is one 
loop, we can 
specify it with 
parallel do.



 We can separate parallel construct with do.  
 If target of parallelization is the inner loop, separated is faster. 

 If the outer loop can be parallelized, then the best target to be parallelized is 
the outer loop.

 If there is a data dependency for the outer loop, then it cannot be parallelized 
for the outer loop.
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do i=1,  n
!$omp parallel do

do j=1,  n
<A parallelizable 
statements. >

enddo
!$omp end parallel do 
enddo

!$omp parallel 
do i=1,  n
!$omp do

do j=1,  n
<A parallelizable 
statements. >

enddo
!$omp end do
enddo
!$omp end parallel 

A Note of Nested Loops for 
parallel construct ( 2/2 )



An Example of Braking Data Dependency 
 e.g.) Summation to arrays with indirect accesses. 

 Programmer may judge correct execution according to pattern of indirect 
accesses and timings of threads execution.
 Theoretically it is wrong. 

 OpenMP system does not provide any consistency of data.
 To keep consistency of data, we need mutual exclusion by critical construct or 

others.  
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!$omp parallel do private( j )
do i=1, n

j = indx( i )
a( j ) = a( j ) + 1

enddo
!$omp end parallel do

 e.g.) A wrong code. 
!$omp parallel do private( j )
do i=１,  n

j = indx( i )
!$omp critical

a( j ) = a( j ) + １
!$omp end critical
enddo
!$omp end parallel do



Speed down by critical construct
 If we use critical construct, performance will be down basically. In particular, it is 

remarkable when it runs with high number of threads. 
 If CPU provides hardware support for atomic construct, implementation with atomic

construct is faster in some cases. However in this case, performance also goes down if 
we use more threads. 

 To establish high performance, modification of algorithm is needed basically. 

 There are the following three strategies.

1. Removing critical construct by limiting accesses within thread.
 Algorithm is modified to refer local region of allocated data in each thread for indirect accesses in 

theoretical. 

2. Minimizing access between threads. 
 Reducing number of threads to enter parallel region of critical construct at same time. Check 

data access pattern for indirect accesses in advance, then change data for indirect access to do 
that.

3. Separate the part to access inter threads, then it remakes sequential code. 
 e.g.) reduction clause for dot products. 
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Drawbacks of Parallelization with 
OpenMP ( 1/2 )

 OpenMP is basically designed to parallelize simple loops. 
 Parallelization of complex loops from real applications may be 

difficult to implement directives by OpenMP. 
1. Number of variables that should be specified in private clause 

goes big number. 
 Variables specified by inner loops are usually many to parallelize 

them for the outer loop. 
 Some compilers do not print errors for missing declaration of 

variables for private clause, since duties are owned by user.  
 If you miss the declaration, you see different results to results by 

sequential execution. This means that debugging gets difficult.
 A Solution: Verify parallelization from logs of optimization by 

compiler.  
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2. It is difficult to obtain high performance if we execute code with high number 
of threads.

 Again, performance is down if we use more than 8 threads in experimental 
knowledge in current CPUs.
1. Low memory bandwidth to establish low power. 
2. There is no parallelism for target loops. (Length of the loops are short.) 

 To solve the above problem, we need modifications of algorithm and 
implementation. This means that merits of OpenMP are lost, such as easy 
implementation. 

3. Basically, OpenMP is not suited for complex thread parallelization.
 Since OpenMP is designed to parallelize simple kernel loops for numerical 

computation, such as using parallel for construct. 
 If you need to implement complex process, it is better to use native thread 

APIs, such as Pthread.
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Drawbacks of Parallelization with 
OpenMP ( 2/2 )



Examples from Real Codes
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e.g.) Matrix-Matrix Multiplication with 
OpenMP Parallelization (C Language)
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#pragma omp parallel  for  private (j, k)
for(i=0; i<n; i++) {
for(j=0; j<n; j++) {
for(k=0; k<n; k++) {
C[i][j] += A[i][k] * B[k][j];

}
}

}
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!$omp parallel  do  private (j, k)
do i=1, n

do j=1, n
do k=1, n

C(i, j) = C(i, j) + A(i, k) * B(k, j)
enddo

enddo
enddo
!$omp end parallel do

e.g.) Matrix-Matrix Multiplication with 
OpenMP Parallelization (Fortran Language)



A High Performance 
Implementation: First Touch
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What is “First Touch”
 First Touch is a memory optimization technique for shared parallel 

machines, which are consist of
ccNUMA (Cache Coherent Non-Uniform Memory Access).

 One of important techniques for parallel programing with OpenMP.
 By using nature of memory structure of ccNUMA. 
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CPU #0

Mem. #0

CPU #1

Mem. #1

Mem. #2 Mem. #3

CPU #2 CPU #3

A Hardware 
structure of 
ccNUMA.

Fast Access

Slow Access



Why Fast Touch is effective?
 In hardware of ccNUMA, allocated array is assigned to 

memory that is most near from core which accesses the 
array at first time. 

 By using this nature, initialize the array by using OpenMP at 
first time in the program with same data access pattern of 
main computations for the array. After the initialization, the 
array is assigned to nearest memory for the core to be 
computed.

 Fast Touch can be implemented  with same loop structure 
for the main computation to initialize array, such as zero or 
data settings.

Introduction to Parallel Programming for 
Multicore/Manycore Clusters

58



e.g.) First Touch
( C Language)
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#pragma omp parallel for private( j )
for (i=0; i<100; i++) {
for (j=0;  j<100; j++) {
a[ i ] = 0.0;
amat[ i ][ j ] = 0.0;

}
….

#pragma omp parallel for private( j )
for (i=0; i<100; i++) {
for (j=0;  j<100; j++) {
a[ i ] = a[ i ] + amat[ i ][ j ]* b[ j ];

}

Initialization for 
First Touch.
This needs to 
implement 
first part of 
the program.

Main computation
with first-touched
data.
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!$omp parallel do private( j )
do i=1, 100

do j=1,  100
a( i ) = 0.0d0
amat( i , j ) =0.0d0 

enddo
enddo
!$omp end parallel do
….
!$omp parallel do private( j )
do i=1, 100

do j=1,  100
a( i ) = a( i ) + amat( i , j ) * b( j )

enddo
enddo
!$omp end parallel do

e.g.) First Touch
( Fortran Language)

Initialization for 
First Touch.
This needs to 
implement 
first part of 
the program.

Main computation
with first-touched
data.



Effect of First Touch 
 T2K Open Supercomputer (16 cores / node)
 The AMD Quad Core Opteron (Barcelona)

 4 sockets, 4 cores per socket, total is 16 cores, ccNUMA.

 A sparse matrix-vector multiplication. This is same implementation 
of numerical library Xabclib. 
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!$omp parallel do private(S,J_PTR,I)
DO K=１, NUM_SMP

DO I=KBORDER(K-１)+１,KBORDER(K)
S=0.0D0
DO J_PTR=IRP(I),IRP(I+１)-１

S=S+VAL( J_PTR ) * X(ICOL( J_PTR ))
END DO
Y(I)=S

END DO
END DO

!$omp end parallel do

Indexes of rows of each thread 
for the sparse matrix. 

Accesses to non-zero elements to be computed. 

Computation for sparse matrix-
vector multiplication.

Indexes of Right Hand Side ｂ.
(Indirect accesses)Sparse matrix format: 

CRS 
(Compressed Row Storage)



Effect of Sparse Matrix-vector Multiplication 
with First Touch (AMD Quad Core Opteron, 16 Threads）
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Matrices that effects well for First Touch

 sme3Da
 http://www.cise.ufl.edu/research/sparse/

matrices/FEMLAB/sme3Da.html
 Location of non-zero elements is 

distributed. 
 number of rows:12,504 
 Very small size.

 xenon2
 http://www.cise.ufl.edu/research/sparse/

matrices/Ronis/xenon2.html
 Almost “tri-diagonal”
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A tri-diagonal matrix.
←By using nature of 
ccNUMA , matrix A 
and RHS b can be 
optimized for both 
allocation.

←Matrix A is 
optimized, and 
RHS b is on cache
memory.



A Note of implementation of First Touch
 There is no gain except for ccNUMA architectures. 

 The FX10 and K-computer are NOT ccNUMA; hence no gain.

 There is no gain expect for “hand made” code; Programmer needs 
to take care of allocations of arrays and computations by himself or 
herself. 
 In case of using numerical libraries:

 Programmer prepares arrays (or matrices).
 In natural procedure of this, setting arrays at first, then call a numerical 

library. 
 In the above process, programmer cannot know access patterns of main 

computation; since library is provided by a binary library.  
 Hence programmer cannot implement initialization with same access pattern 

of main computations within the library. 
 Since the above reasons, we cannot implement First Touch.
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A Quick Note of OpenMP 4.0
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OpenMP 4.0
 Specification was opened in July 2013. 

 http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

 Specifying offloading of devices, such as GPUs for computations of 
OpenMP:
 target construct

 Specifying multi parallel devices: 
 terms clause

 Specifying SIMD operations:
 simd construct

 Specifying allocation between threads and cores (NUMA affinity):
 proc_bind clause

 For using GPU, OpenACC is providing same functions. 
(See next slides.)
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Towards to OpenACC

Introduction to Parallel Programming for 
Multicore/Manycore Clusters

67



Overview of OpenACC
 OpenACC, which can be treated with GPU with directives 

like OpenMP, is getting pervasive. 
 I do not predict that which will be widely used between OpenMP 

4.0 and OpenACC.

 It is easy translated to OpenACC if you have parallelized 
with OpenMP.
 parallel construct in OpenMP
→ kernel construct or parallel construct in OpenACC.

 Note to be implemented in OpenACC：

 Minimize data movement from CPU to GPU, and from GPU to 
CPU.

 To minimize the data movement, we need to use data construct 
for target arrays. 
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Data flows of data construct

GPU

Send dataSend data

Write backWrite back

!$acc data
…

!$acc end data

A

copyin

copyout

create

present
A
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CPU Memory Device Memory



do iter = 1, MAX_ITER
!$acc kernels

do i=1, n
do j=1, n

b(i) = A(i, j) * …
enddo   

enddo
!$acc end kernels

…
!$acc kernels

do i=1, n
do j=1, n

b(i) = b(i) + A(i, j) * …
enddo   

enddo
!$acc end kernels

…
enddo 

A(i, j) A(i, j)

CPU Memory Device Memory

Send Data

b(i)b(i) Write Back

A(i, j) A(i, j)

CPU Memory

b(i)b(i)

b(i)b(i) Write Back

Send Data

Device Memory
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!$acc data copyin(A) create(b)
do iter = 1, MAX_ITER

!$acc data present(A, b) 
!$acc kernels

do i=1, n
do j=1, n

b(i) = A(i, j) * …
enddo   

enddo
!$acc end kernels
!$acc end data

…
!$acc data present(A, b)
!$acc kernels

do i=1, n
do j=1, n

b(i) = b(i) + A(i, j) * …
enddo   

enddo
!$acc end kernels
!$acc end data

…
enddo 

!$acc end data

A(i, j) A(i, j)

CPU Memory Device Memory

Send Data

b(i)

A(i, j)

b(i)

Device Memory

Computation with data on device memory.
(There is no sending data from CPU, and 

writing back to CPU memory.)
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