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Agenda
1. Power Method
2. Execute sample program of power 

method
3. Explanation of sample program
4. Lecture of parallelization
5. Homework
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Power Method
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What is power method?
 <Maximum absolute eigenvalue> and <corresponding 

eigenvector> of standard eigenproblem can be calculated by 
using power method.
 Standard Eigenproblem：

 An Eigenvalue： An Eigenvector：

, where a matrix A be a n×n matrix.
 Let sorted of eigenvalues of A from large part of its absolute, 

and with no deflation be                         .
 Let corresponding eigenvectors with normalized and 

orthogonalized be                     . 
 We can describe arbitrary vector with a linear combination: 
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What is power method?
 By applying A to left hand side, we obtain;

 With respect to formula of standard eigenvalue 
problem, we obtain:
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What is power method?
 By applying Au with n-times, we obtain:

 This implies that coefficients of the vectors are 
reducing except for      when k is increasing.  
→It converges with a maximum eigenvalue 

and a corresponding eigenvector.
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What is power method?
 We denote for dot products. Consider the following 

formula: 
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Algorithm of Power Method
 Do the following until converge: 

1. Make an initial guess ｘ and normalize it; 
2. λ_0 = 0.0;  i =１;
3. Compute a matrix-vector multiplication: y = A x ;
4. Compute an approximate eigenvalue 

λ_i ＝ (y,  y) / (y,  x) ;
5. If |λ_i - λ_{ i -１ }| is small enough: 

 It converges, and exit;
6. Otherwise：

 Normalize ｘ and x = y;
 i = i +１;  go to 3;
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Execute sample program
（Power Method）
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Note: Sample program of power method
 File name of C/Fortran codes:

PowM-fx.tar 
 Change queue name from lecture to lecture6

in job script file pown.bash .
 Submit the job with “pjsub”.
 lecture : Queue in out of time for the lesson.
 lecture6: Queue in time for the lesson.
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Execute sample program of power method
 Type the followings in command line. 

$  cp  /home/z30082/PowM-fx.tar  ./
$  tar  xvf PowM-fx.tar 
$  cd  PowM

 Choose the follows: 
$  cd  C : For C language.
$  cd  F : For Fortran language. 

 Type the follows:
$  make
$  pjsub  powm.bash

 After finishing execution, type the follow:
$  cat powm.bash.oXXXXXX
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Output for sample program of 
power method (C Language)
 The follows can be seen if execution is successfully 

ended. 

N  = 4000
Power Method time  = 0.472348 [sec.]
Eigenvalue  = 2.000342e+03
Iteration Number: 7
Residual 2-Norm ||A x - lambda x||_2  = 7.656578e-09
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Output for sample program of 
power method (Fortran Language)
 The follows can be seen if execution is successfully 

ended. 

N = 4000
Power Method time[sec.] = 0.3213765330146998
Eigenvalue = 2000.306721217447
Iteration Number: 6
Residual 2-Norm ||A x - lambda x||_2 = 
4.681124813641846E-07
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Explanation of sample program
 You can change size of matrix to modify the following 

number of:
#define  N      4000

 Specification of PowM function
 Maximum eigenvalue with double precision is returned. 
 Eigenvector corresponding to maximum eigenvalue is stored in 

array of x with double precision  
 Iteration count when it converges is stored in argument n_iter. 
 If it returns “-1”, then this means that no convergence is 

happen until maximum iteration MAX_ITER. 
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Note: sample program of Fortran
Declaration of size of matrix NN and 

MAX_ITER is in:
pown.inc

 The size of matrix is defined by variable 
NN:

integer  NN
parameter (NN=4000)
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Overview of sample program 
(in function of PowM)
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/* Normizeation of x */
d_tmp1 = 0.0;
for(i=0; i<n; i++) {

d_tmp1 += x[i] * x[i];
}
d_tmp1 = 1.0 / sqrt(d_tmp1);
for(i=0; i<n; i++) {

x[i] = x[i] * d_tmp1;
}

/* Main iteration loop ---------------------- */
for(i_loop=1; i_loop<MAX_ITER; i_loop++)  {

/* Matrix Vector Product */
MyMatVec(y, A, x, n);

/* innner products */
d_tmp1 = 0.0;
d_tmp2 = 0.0;
for (i=0; i<n; i++) {
d_tmp1 += y[i] * y[i];
d_tmp2 += y[i] * x[i];

}

/* current approximately eigenvalue */
dlambda = d_tmp1 / d_tmp2;

/* Convergence test*/
if (fabs(d_before-dlambda) < EPS ) {

*n_iter = i_loop;
return dlambda;

}

/* keep current value */
d_before = dlambda;

/* Normalization and set new x */
d_tmp1 = 1.0 / sqrt(d_tmp1);
for(i=0; i<n; i++)

x[i] = y[i] * d_tmp1;

}  /* end of i_loop -------------------------- */

Normalization 
of vector x

Matrix-vector 
Multiplications

Dot product 
with vectors
x and y.

Normalization  
and 
setting of new 
vector x.



Homework 3
 Parallelize function (procedure) of PowM.
 For debugging, set #define  N 192 . 
 Use parallel matrix-vector code in previous lesson.

 In the sample program, 2-norm of residual vector 
Ax-λｘ is calculated.  Use the calculated value for 
debugging. 
 If you found big value of this, it means a bug in program.
 The parallelization of computation of 2-norm may be 

needed if you choose “perfect” distribution of vector x. This 
explains later.

 By parallelization, number of iteration and execution time may 
change.
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Hints for parallelization
 As same as previous lesson, one of easy ways to 

parallelize the code is allocating redundant 
matrix A with NxN, vectors x and y with N, for each 
processes. 

 Use following distributions. This is as same as previous lesson 
for matrix-vector multiplication. 
 Matrix Ａ：

Row-wise block distribution with one dimensional.
 Vector ｘ：

Allocate redundant vector with N dimension for all processes.
 Vector ｙ：

Block distribution.
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Hints of parallelization (Strategy)
 There are two ways to parallelize the code:

 Way 1： Only parallelization for part of “matrix-vector multiplication”
 Way 2： Parallelization of all routines. 

 Easy way is 1 (But parallel efficiency is limited). The follows is 
procedure. 

1. Use developed “parallel matrix-vector multiplication”.
2. Since y of y = Ax is retuned by distributed manner, it cannot continue 

the following computations. Hence to match sequential result, we need 
a communication such that:

 By using an MPI function just after part of calling MyMatVec() in PowM
function to gather all distributed elements of y.

 There are many ways to implement it. The easiest way is implementation 
with MPI_Allreduce().

3. To use MPI_Allreduce(), initialization of array, such as fill on 0, is needed. 
This will be explained later. 
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Hints of parallelization 
( Way 2. Parallelization of all routines )
 Parallelize processes in function PowM with the following:

1. For the part of normalization of vector x
 After finishing local computations of dot product with block distribution, call function of 

MPI_Allreduce, which as shown as the follow.

 Gather all elements of vector for partially calculated in each PE with MPI_Allreduce
function.This will be explained later.
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Hints of parallelization 
( Way 2. Parallelization of all routines )
 The follows is an implementation: 
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/* Normizeation of x */
…

d_tmp1_t = 0.0;
for(i=myid*ib; i<i_end; i++) {

d_tmp1_t += x[i] * x[i];
}
MPI_Allreduce(&d_tmp1_t,  &d_tmp1, 1, MPI_DOUBLE, 

MPI_SUM, MPI_COMM_WORLD);

d_tmp1 = 1.0 / sqrt(d_tmp1);
for(i=myid*ib; i<i_end; i++) {

x_t[i] = x[i] * d_tmp1;
}
/* x_t[ ] is set to 0 in initial state. */ 

MPI_Allreduce(x_t, x, n, MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD);

….



Hints of parallelization 
( Both way 1 and way 2 )

2. Part of matrix-vector multiplication. (In MyMatVec Function)
 Use parallel code in previous lesson.
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Hints of parallelization 
( Way 2. Parallelization of all routines )

3. Dot product of vectors x and y.
 Compute with respect to block distribution. 
 To obtain correct answer, do not forget to use 

MPI_Allreduce function. 
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Hints of parallelization 
( Way 2. Parallelization of all routines )

4. Part of normalization and set new x:
 x：Allocated redundant vector with N-dimensional; 

y: Block distribution;
 Computations of normalization are performed with local data, 

and set result to x.
 Elements of x are distributed. Hence calculated x is stored in 

block distribution manner. 
 All elements of ｘ need since next computation of matrix-vector 

multiplication is needed with the whole elements of x
 To gather distributed data, we use MPI_Allreduce.
To use MPI_Allreduce, we allocate a buffer array  x_t with 

zero cleared for distributed part. This can be used as:
MPI_Allreduce( x_t,  x,  n,  MPI_DOUBLE, MPI_SUM, 

MPI_COMM_WORLD );Introduction to Parallel Programming for 
Multicore/Manycore Clusters
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Confirmation of MPI_Allreduce function 
(C Language)

MPI_Allreduce
(x_t, x,  n,  MPI_DOUBLE,  MPI_SUM, MPI_COMM_WORLD);
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Confirmation of MPI_Allreduce function 
(Fortran Language)

MPI_ALLREDUCE
(x_t, x,  n,  MPI_DOUBLE_PRECISON,  MPI_SUM, MPI_COMM_WORLD, ierr)
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A technique of MPI 
(Gather vectors with MPI_Allreduce)

 Gather distributed data with MPI_Allreduce function, then 
it owns redundant elements between all PEs. 
 Write MPI_SUM in iop
 Initialize elements of own part with 0. 
 Consider the following process.
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It can also be implemented with MPI_gather. 



Homework 3
 (Standard level) For the first step, 

implement 
Way 1： Only parallelization for part 

of “matrix-vector multiplication”

 (High level) After finishing the way 1, 
implement

Way 2： Parallelization of all routines. 
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Lessons
1. Homework 3
2. Parallelize the sample program and 

evaluate it. Only allocations of required 
size of arrays of matrix A and vectors x 
and y for each PE are allowed. 
Compare performance to 1. 
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Lessons (Cont’d)
3. Evaluate number of iterations when options of compiler are 

changed. Compute execution time per iteration to evaluate 
it. 

4. Improve performance of the sample programs with non-
blocking communications. Evaluate program with several 
sizes of matrices. 

5. Parallelize the program with hybrid MPI/OpenMP execution. 
Evaluate the program with several combinations of 
execution, such as P8T16, P16T8, and so on.

Find condition that pure MPI execution is the fastest to 
other hybrid MPI/OpenMP execution. 
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