
Parallelization of
Power Method

東京大学情報基盤中心 准教授 片桐孝洋

Takahiro Katagiri, Associate Professor,
Information Technology Center, The University of Tokyo

Introduction to Parallel Programming for
Multicore/Manycore Clusters

1

台大数学科学中心 科学計算冬季学校

Agenda
1. Power Method
2. Execute sample program of power

method
3. Explanation of sample program
4. Lecture of parallelization
5. Homework

Introduction to Parallel Programming for
Multicore/Manycore Clusters

2

Power Method

Introduction to Parallel Programming for
Multicore/Manycore Clusters

3

What is power method?
 <Maximum absolute eigenvalue> and <corresponding

eigenvector> of standard eigenproblem can be calculated by
using power method.
 Standard Eigenproblem：

 An Eigenvalue： An Eigenvector：

, where a matrix A be a n×n matrix.
 Let sorted of eigenvalues of A from large part of its absolute,

and with no deflation be .
 Let corresponding eigenvectors with normalized and

orthogonalized be .
 We can describe arbitrary vector with a linear combination:

Introduction to Parallel Programming for
Multicore/Manycore Clusters

4

xAx 
x

n ,,, 21 

nxxx ,,, 21 

nn xcxcxcu  ,...,2211



What is power method?
 By applying A to left hand side, we obtain;

 With respect to formula of standard eigenvalue
problem, we obtain:

Introduction to Parallel Programming for
Multicore/Manycore Clusters

5

),...,(2211 nn xcxcxcAAu 













n
n

n

nnn

xcxcxc

xcxcxcAu

1
2

1

2
2111

222111

,...,

,...,









What is power method?
 By applying Au with n-times, we obtain:

 This implies that coefficients of the vectors are
reducing except for when k is increasing.
→It converges with a maximum eigenvalue

and a corresponding eigenvector.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

6





























 n

k

n
n

k
kk xcxcxcuA

1
2

1

2
2111 ,...,







1x

What is power method?
 We denote for dot products. Consider the following

formula:

Introduction to Parallel Programming for
Multicore/Manycore Clusters

7

1

2

2
12

1

22
1

2
1

12
1

2

2
22

1

22
1

2
1

22
1

1 1

1

1 1

11

1

11

),(

),(

),(
),(















































































 



 







n

i
i

k

i
i

k

n

i
i

k

i
i

k

n

i

n

j
ji

k
j

k
iji

n

i

n

j
ji

k
j

k
iji

kk

kk

xcxc

xcxc

xxcc

xxcc

uAuA
uAuA

),(yx

（ｋ→∞）

Algorithm of Power Method
 Do the following until converge:

1. Make an initial guess ｘ and normalize it;
2. λ_0 = 0.0; i =１;
3. Compute a matrix-vector multiplication: y = A x ;
4. Compute an approximate eigenvalue

λ_i ＝ (y, y) / (y, x) ;
5. If |λ_i - λ_{ i -１ }| is small enough:

 It converges, and exit;
6. Otherwise：

 Normalize ｘ and x = y;
 i = i +１; go to 3;

Introduction to Parallel Programming for
Multicore/Manycore Clusters

8

Execute sample program
（Power Method）

Introduction to Parallel Programming for
Multicore/Manycore Clusters

9

Note: Sample program of power method
 File name of C/Fortran codes:

PowM-fx.tar
 Change queue name from lecture to lecture6

in job script file pown.bash .
 Submit the job with “pjsub”.
 lecture : Queue in out of time for the lesson.
 lecture6: Queue in time for the lesson.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

10

Execute sample program of power method
 Type the followings in command line.

$ cp /home/z30082/PowM-fx.tar ./
$ tar xvf PowM-fx.tar
$ cd PowM

 Choose the follows:
$ cd C : For C language.
$ cd F : For Fortran language.

 Type the follows:
$ make
$ pjsub powm.bash

 After finishing execution, type the follow:
$ cat powm.bash.oXXXXXX

Introduction to Parallel Programming for
Multicore/Manycore Clusters

11

Output for sample program of
power method (C Language)
 The follows can be seen if execution is successfully

ended.

N = 4000
Power Method time = 0.472348 [sec.]
Eigenvalue = 2.000342e+03
Iteration Number: 7
Residual 2-Norm ||A x - lambda x||_2 = 7.656578e-09

Introduction to Parallel Programming for
Multicore/Manycore Clusters

12

Output for sample program of
power method (Fortran Language)
 The follows can be seen if execution is successfully

ended.

N = 4000
Power Method time[sec.] = 0.3213765330146998
Eigenvalue = 2000.306721217447
Iteration Number: 6
Residual 2-Norm ||A x - lambda x||_2 =
4.681124813641846E-07

Introduction to Parallel Programming for
Multicore/Manycore Clusters

13

Explanation of sample program
 You can change size of matrix to modify the following

number of:
#define N 4000

 Specification of PowM function
 Maximum eigenvalue with double precision is returned.
 Eigenvector corresponding to maximum eigenvalue is stored in

array of x with double precision
 Iteration count when it converges is stored in argument n_iter.
 If it returns “-1”, then this means that no convergence is

happen until maximum iteration MAX_ITER.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

14

Note: sample program of Fortran
Declaration of size of matrix NN and

MAX_ITER is in:
pown.inc

 The size of matrix is defined by variable
NN:

integer NN
parameter (NN=4000)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

15

Overview of sample program
(in function of PowM)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

16

/* Normizeation of x */
d_tmp1 = 0.0;
for(i=0; i<n; i++) {

d_tmp1 += x[i] * x[i];
}
d_tmp1 = 1.0 / sqrt(d_tmp1);
for(i=0; i<n; i++) {

x[i] = x[i] * d_tmp1;
}

/* Main iteration loop ---------------------- */
for(i_loop=1; i_loop<MAX_ITER; i_loop++) {

/* Matrix Vector Product */
MyMatVec(y, A, x, n);

/* innner products */
d_tmp1 = 0.0;
d_tmp2 = 0.0;
for (i=0; i<n; i++) {
d_tmp1 += y[i] * y[i];
d_tmp2 += y[i] * x[i];

}

/* current approximately eigenvalue */
dlambda = d_tmp1 / d_tmp2;

/* Convergence test*/
if (fabs(d_before-dlambda) < EPS) {

*n_iter = i_loop;
return dlambda;

}

/* keep current value */
d_before = dlambda;

/* Normalization and set new x */
d_tmp1 = 1.0 / sqrt(d_tmp1);
for(i=0; i<n; i++)

x[i] = y[i] * d_tmp1;

} /* end of i_loop -------------------------- */

Normalization
of vector x

Matrix-vector
Multiplications

Dot product
with vectors
x and y.

Normalization
and
setting of new
vector x.

Homework 3
 Parallelize function (procedure) of PowM.
 For debugging, set #define N 192 .
 Use parallel matrix-vector code in previous lesson.

 In the sample program, 2-norm of residual vector
Ax-λｘ is calculated. Use the calculated value for
debugging.
 If you found big value of this, it means a bug in program.
 The parallelization of computation of 2-norm may be

needed if you choose “perfect” distribution of vector x. This
explains later.

 By parallelization, number of iteration and execution time may
change.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

17

Hints for parallelization
 As same as previous lesson, one of easy ways to

parallelize the code is allocating redundant
matrix A with NxN, vectors x and y with N, for each
processes.

 Use following distributions. This is as same as previous lesson
for matrix-vector multiplication.
 Matrix Ａ：

Row-wise block distribution with one dimensional.
 Vector ｘ：

Allocate redundant vector with N dimension for all processes.
 Vector ｙ：

Block distribution.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

18

Hints of parallelization (Strategy)
 There are two ways to parallelize the code:

 Way 1： Only parallelization for part of “matrix-vector multiplication”
 Way 2： Parallelization of all routines.

 Easy way is 1 (But parallel efficiency is limited). The follows is
procedure.

1. Use developed “parallel matrix-vector multiplication”.
2. Since y of y = Ax is retuned by distributed manner, it cannot continue

the following computations. Hence to match sequential result, we need
a communication such that:

 By using an MPI function just after part of calling MyMatVec() in PowM
function to gather all distributed elements of y.

 There are many ways to implement it. The easiest way is implementation
with MPI_Allreduce().

3. To use MPI_Allreduce(), initialization of array, such as fill on 0, is needed.
This will be explained later.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

19

Hints of parallelization
(Way 2. Parallelization of all routines)
 Parallelize processes in function PowM with the following:

1. For the part of normalization of vector x
 After finishing local computations of dot product with block distribution, call function of

MPI_Allreduce, which as shown as the follow.

 Gather all elements of vector for partially calculated in each PE with MPI_Allreduce
function.This will be explained later.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

20

PE０ PE1 PE2 PE3

d_tmp1 d_tmp1 d_tmp1 d_tmp1

d_tmp1 d_tmp1 d_tmp1 d_tmp1

MPI_Allreduce

Hints of parallelization
(Way 2. Parallelization of all routines)
 The follows is an implementation:

Introduction to Parallel Programming for
Multicore/Manycore Clusters

21

/* Normizeation of x */
…

d_tmp1_t = 0.0;
for(i=myid*ib; i<i_end; i++) {

d_tmp1_t += x[i] * x[i];
}
MPI_Allreduce(&d_tmp1_t, &d_tmp1, 1, MPI_DOUBLE,

MPI_SUM, MPI_COMM_WORLD);

d_tmp1 = 1.0 / sqrt(d_tmp1);
for(i=myid*ib; i<i_end; i++) {

x_t[i] = x[i] * d_tmp1;
}
/* x_t[] is set to 0 in initial state. */

MPI_Allreduce(x_t, x, n, MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD);

….

Hints of parallelization
(Both way 1 and way 2)

2. Part of matrix-vector multiplication. (In MyMatVec Function)
 Use parallel code in previous lesson.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

22

PE0

PE１

PE2

PE3

＝

＝

＝

＝

Hints of parallelization
(Way 2. Parallelization of all routines)

3. Dot product of vectors x and y.
 Compute with respect to block distribution.
 To obtain correct answer, do not forget to use

MPI_Allreduce function.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

23

Hints of parallelization
(Way 2. Parallelization of all routines)

4. Part of normalization and set new x:
 x：Allocated redundant vector with N-dimensional;

y: Block distribution;
 Computations of normalization are performed with local data,

and set result to x.
 Elements of x are distributed. Hence calculated x is stored in

block distribution manner.
 All elements of ｘ need since next computation of matrix-vector

multiplication is needed with the whole elements of x
 To gather distributed data, we use MPI_Allreduce.
To use MPI_Allreduce, we allocate a buffer array x_t with

zero cleared for distributed part. This can be used as:
MPI_Allreduce(x_t, x, n, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);Introduction to Parallel Programming for
Multicore/Manycore Clusters

24

Confirmation of MPI_Allreduce function
(C Language)

MPI_Allreduce
(x_t, x, n, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);

Introduction to Parallel Programming for
Multicore/Manycore Clusters

25

Input vector.
Each PE has

different
elements.

Output vector.
Each PE has

same
element.

Length
of

vectors.

Type of
elements

of
vector.

Specifying
operations.
MPI_SUM：
summation

of
elements
of vectors

in each PE.

Communicator.

Confirmation of MPI_Allreduce function
(Fortran Language)

MPI_ALLREDUCE
(x_t, x, n, MPI_DOUBLE_PRECISON, MPI_SUM, MPI_COMM_WORLD, ierr)

Introduction to Parallel Programming for
Multicore/Manycore Clusters

26

Input vector
Each PE has

different
elements.

Output vector.
Each PE has

same
element.

Length
of

vectors.

Type of
elements

of
vector

Specifying
operations.
MPI_SUM：
summation

of
elements
of vectors

in each PE.

Communicator.

A technique of MPI
(Gather vectors with MPI_Allreduce)

 Gather distributed data with MPI_Allreduce function, then
it owns redundant elements between all PEs.
 Write MPI_SUM in iop
 Initialize elements of own part with 0.
 Consider the following process.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

27

０

０

０

０

０

０

PE0 PE1 PE2 PE3

MPI_Allreduce
(..,MPI_SUM,..);

PE0 PE1 PE2 PE3

Initial State Final State

It can also be implemented with MPI_gather.

Homework 3
 (Standard level) For the first step,

implement
Way 1： Only parallelization for part

of “matrix-vector multiplication”

 (High level) After finishing the way 1,
implement

Way 2： Parallelization of all routines.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

28

Lessons
1. Homework 3
2. Parallelize the sample program and

evaluate it. Only allocations of required
size of arrays of matrix A and vectors x
and y for each PE are allowed.
Compare performance to 1.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

29

Lessons (Cont’d)
3. Evaluate number of iterations when options of compiler are

changed. Compute execution time per iteration to evaluate
it.

4. Improve performance of the sample programs with non-
blocking communications. Evaluate program with several
sizes of matrices.

5. Parallelize the program with hybrid MPI/OpenMP execution.
Evaluate the program with several combinations of
execution, such as P8T16, P16T8, and so on.

Find condition that pure MPI execution is the fastest to
other hybrid MPI/OpenMP execution.

Introduction to Parallel Programming for
Multicore/Manycore Clusters

30

