
Takahiro Katagiri
Information Technology Center,

The University of Tokyo

1

First French-Japanese Workshop
- Petascale Application, Algorithms and Programming (PAAP) -

December 1st, 2007, 2:10pm – 2:40pm

Motivation

Our Solutions

 FIBER : An Auto-tuning Framework

 ABCLibScript: An Auto-tuning Description

Language

 ABCLib: A Library with Auto-tuning Facility

ABCLib_DRSSED: An Eigenvalue Solver

MS-MPI Run-time Auto-tuning Project

Related Projects

Conclusion Remarks

2

To establish high productivity

on numerical software

3

4

 Why so high cost?
1. Explosion of search space for tuning parameters

 Excessive development processes

2. Tuning is not science, but craftspeople work…

 Excessive personnel costs

1. Excessive development processes
Many algorithm parameters
 Preconditioner, restart frequency, block algorithm length,

…

 Complex current computer architectures
 multicore, unsymmetrical memory access,…

2. Excessive personnel costs
 Intricate high performance implementations

 Craftspeople only can do it.

 Compilers do not work well on the complex
current computers….

5

Averaged gap: 10x. Dedicated sizes: 100x.

How should we manage it?

T
im

e
 in

 S
e
co

n
d
s No Unrolling

(Compiler optimization)

•Unrolled coeds for matrix-matrix multiplication with nested 3 loops (i,j,k) from 1 to 4.

•The variation is 4*4*4=64 kinds.

•For matrix size N, it varies from 1 to 2048 stridden 1.

•Compiler: HITACHI Optimized Fortran90. Option: -Oss with automatically parallelization.

•Machine: HITACHI SR11000/J2 Model installed in Information Technology Center,
The University of Tokyo. It has 16PEs per node.

1. To reduce tuning processes:

 Automation of tuning can reduce the tuning

process to hand-tuning.

 Tuning is time-consuming work even in craftsman.

 Writing complicated codes.

 Troublesome test-run to tune

2. To reduce personnel cost:

 “Automatic Tuning Recipe” makes tuning

non-expert work.

 Software Framework

 Auto-tuning facility

 Computer language for non-expert developers

 Source code generator

 Tuning object codes and tuning control codes

6

FIBER, ABCLib, ABCLibScript

7

8

…

Operating Systems

Communication
Libraries (MPI)

Linear

Equations
Solvers

Eigenvalue

Solvers

…

Library Interface

HITACHI SR Fujitsu VPP NEC SX
PC Clusters

Auto-tuning

Facility

Auto-modeling Funct.

Code generation Funct.

Parameter Opt. Funct.

BLAS Performance

Parameters

Optimization

Codes & Info.

Implementation

Info.
Scheduling & Computer Info.

Compilers

Sparse

Direct

Solvers

FIBER:

11

6

…

Operating Systems

Communication
Libraries (MPI)

Linear

Equations
Solvers

Eigenvalue

Solvers

…

Library Interface

HITACHI SR Fujitsu VPP NEC SX
PC Clusters

Auto-tuning

Facility

Auto-modeling Funct.

Code generation Funct.

Parameter Opt. Funct.

BLAS Performance

Parameters

Optimization

Codes & Info.

Implementation

Info.
Scheduling & Computer Info.

Compilers

Sparse

Direct

Solvers

FIBER (Framework for Install-time, Before
Execute-time and Run-time auto-tuning)
Paradigm
 FIBER paradigm is a methodology for auto-tuning software

to generalize application and obtain high accuracy for estimated
parameters.

How Auto-tuning is performed:
 (a) Parameters that affect performance are extracted
 (b) The parameters are automatically optimized

 (a) Parameter extraction:
 by users utilizing a dedicated language (ABCLibScript)

 (b) Parameter optimization:
 three kinds of optimization layers
 using statistical methods

12

15

Library Developers

Specified by library developers

Includes instructions for
optimization

Independence of
computer environments

Develop the codes

using ABCLibScript

Source codes

including auto-
tuning facilities

Loop unrolled code

Algorithm (sub-routine)

selection code

Parameter optimization function

Parameter search function

Release library to the public

Execute pre-processor

(ABCLibCodeGen)

Install-time Optimization

16

End-users

Estimated best unrolling depth

Estimated best block lengthGenerated library object

Specified tuned parameters

Install the released library into user’s machine environment

(FIBER install-time optimization is performed）

Debugging and Application Developments

Using Small Sized Problems

Finish debugging or
developing

Use semi-optimized

library

Before Execute-time

optimization

17

Perform Before

Execute-time

optimization

Specify parameters with end-user’s knowledge

(e.g., problem sizes to execute)

Specified best parameters
using user’s knowledge

Run-time optimization

Library is running

Library execution
call CalcEigen(A,x,lamba,n)

Large-Scale Computation

Use fully optimized library

Specify best parameters
using the run-time
parameter information

ABCLibScript:

18

6

…

Operating Systems

Communication
Libraries (MPI)

Linear

Equations
Solvers

Eigenvalue

Solvers

…

Library Interface

HITACHI SR Fujitsu VPP NEC SX
PC Clusters

Auto-tuning

Facility

Auto-modeling Funct.

Code generation Funct.

Parameter Opt. Funct.

BLAS Performance

Parameters

Optimization

Codes & Info.

Implementation

Info.
Scheduling & Computer Info.

Compilers

Sparse

Direct

Solvers

!ABCLib$ install unroll (i) region start

!ABCLib$ name MyMatMul

!ABCLib$ varied (i) from 1 to 8

!ABCLib$ debug (pp)

do i=1, N

do j=1, N

da1 = A(i, j)

do k=1, N

dc = C(k, j)

da1 = da1 + B(i, k) * dc

enddo

A(i, j) = da1

enddo

enddo

!ABCLib$ install unroll (i) region end

 Unrolling Depth：Developer specifies using directive
 Ex.：Matrix-matrix multiplication code

19

Install-time
optimization;

Unrolling process;

Unrolling Depth

Target Region

(Auto-tuning Region)

if (i_unroll .eq. 1) then

Original Code

endif
if (i_unroll .eq. 2) then /* i is dividable by 2 */

im = N/2

i = 1

do ii=1, im

do j=1, N

da1 = A(i, j); da2 = A(i+1,j)

do k=1, N

dc = C(k, j)

da1 = da1 + B(i, k) * dc; da2 = da2 + B(i+1, k) * dc; enddo

A(i, j) = da1; A(i+1,j) = da2

enddo

i = i + 2;

enddo

endif

…

 After invocating pre-processor, the outer i loop is unrolled.

20

After code generation,

the depth of unrolling is

automatically parameterized.

!ABCLib$ static select region start

!ABCLib$ parameter (in CacheS, in NB, in NPrc)

!ABCLib$ select sub region start

!ABCLib$ according estimated

!ABCLib$ (2.0d0*CacheS*NB)/(3.0d0*NPrc)

Target１（Algorithm1）

!ABC-LIB$ select sub region end

!ABC-Lib$ select sub region start

!ABC-Lib$ according estimated

!ABC-Lib$ (4.0d0*ChcheS*dlog(NB))/(2.0d0*NPrc)

Target2（Algorithm2）

!ABC-LIB$ select sub region end

!ABC-LIB$ static select region end

 Selecting algorithms as follows:

21

Install-time Optimization;

Selection Operation;

Input Variables Used in

Cost Definition Funct.

Selection Base on
The Cost

Definition Function

Target Region1

（Tuning Region1）

Target Region2

（Tuning Region2）

Selection information for

Target 1 and 2 is parameterized.

0

5000

10000

15000

20000

25000

30000

35000

40000

CG-S(1) CG-S(2) MG-S HG-S IRCG-S NotOrt.

8

16

32

64

128

Frank Matrix: Execution Time

T
im

e
[se

c.]

#Proc.

1.00E-13

1.00E-11

1.00E-09

1.00E-07

1.00E-05

1.00E-03

1.00E-01
8

16

32

64

128

A
ccu

ra
cy

[F
ro

b
e
n
iu

s]

#Proc.

CG-S(1) CG-S(2)MG-S HG-S IR-CGSNoOrt.

Frank Matrix: Orithogonality

Required Accuracy

From End-user

From 7x to 20x

Speedups MG-S: Default
(with respect to

numerical stability)

Target Application

 Matrix-Matrix Multiplication

ABCLibScript Directive

 Unroll operator only

Computer Environment

 Intel Pentium4 (2.0GHz), PGI compiler

Subjects

 Subject A : Non-expert

 Subject B : Semi-expert (He knows block algorithm.)

Experiment term

 2 weeks for hand tuning

 2 hours for ABCLibScript programming
23

24

4x Speedup

H
IG

H

Subject A

25

Maximum

2.5x speedup

H
IG

H

Subject B

The performance was increased on

between non-expert and

semi-expert developers.

The development term was

reduced from 2 weeks to 2 hours

with keeping better performance.

26

ABCLib:

27

6

…

Operating Systems

Communication
Libraries (MPI)

Linear

Equations
Solvers

Eigenvalue

Solvers

…

Library Interface

HITACHI SR Fujitsu VPP NEC SX
PC Clusters

Auto-tuning

Facility

Auto-modeling Funct.

Code generation Funct.

Parameter Opt. Funct.

BLAS Performance

Parameters

Optimization

Codes & Info.

Implementation

Info.
Scheduling & Computer Info.

Compilers

Sparse

Direct

Solvers

ABCLib_DRESSED:

28

29

 Automatically Blocking-and-Communication adjustment LIBrary

 Timing for auto-tuning: Install-time

 Kernels for auto-tuning: about 30,000 lines.

1. Eigensolver (Real, Symmetric, Dense matrix)
 Householder Tridiagonalization (Tri)

1. BLAS2 Unrolling Depth: Matrix-vector product ; 8 kinds;

2. BLAS2 Unrolling Depth: Matrix updating process; 8 kinds;

3. Communication Implementations: (One-to-one, Collective)

 Householder Inverse Transformation (Inv)
1. BLAS2 Unrolling Depth: Matrix updating process; 8 kinds;

2. Communication Implementations:
(Blocking one-to-one, Non-blocking one-to-one, Collective)

2. QR Decomposition (Gram-Schmidt)
1. BLAS3 Unrolling Depths:

Matrix updating process; 4(outer) * 8(second) = 32 kinds * 2 parts;

2. Block Length for Algorithm: From 1 to 8;

3. Communication Frequency (According to the block length)

30

0

50

100

150

200

250

300

350

400

450

500

SR/Sug. SR/no VPP/Sug. VPP/no PC/Sug. PC/no
Default Install-time Before Execute-time

Problem Size：
6,123（SR/Sugg.)

1,234（SR/no）

5,123（VPP/Sugg.)

912（VPP/no）

5,123（PC/Sugg.)

2,345（PC/no）

1.1—2.6 times :to default

1.1 times : to Install-time

E
xe

cu
tio

n
 tim

e
 in

 S
e
co

n
d

31

0

50

100

150

200

250

300

350

400

SR/Sug. SR/no VPP/Sug. VPP/no PC/Sug. PC/no
Default Install-time Before Execute-time

Problem Size：
5,123（SR/Sugg.)

2,345（SR/no）

6,123（VPP/Sugg.)

912（VPP/no）

5,123（PC/Sugg.)

2,345（PC/no）

1.2—3.5 times:
to default

1.2—1.9 times:

to Install-time

Max.3.4 times:

to estimation

failed case

E
xe

cu
tio

n
 tim

e
 in

 S
e
co

n
d
s

6

…

Operating Systems

Communication
Libraries (MPI)

Linear

Equations
Solvers

Eigenvalue

Solvers

…

Library Interface

HITACHI SR Fujitsu VPP NEC SX
PC Clusters

Auto-tuning

Facility

Auto-modeling Funct.

Code generation Funct.

Parameter Opt. Funct.

BLAS Performance

Parameters

Optimization

Codes & Info.

Implementation

Info.
Scheduling & Computer Info.

Compilers

Sparse

Direct

Solvers

MS-MPI Auto-tuning project:

33

1. PC crusted with the Windows CCS 2003

2. Using MPI

 Windows CCS 2003 provides MS-MPI

Assumption:

 Nodes to be allocated are determined by
scheduling policy on the Windows CCS 2003.

 The physical topology for the allocated node
affects communication performance.

 Communication pattern depends on
the distribution of zero elements for input matrices.

-> It is impossible to find the best
communication implementation
before the running!

Problem:

 Logging for past calls is performed at run-time.

 Main target: Sparse iterative solver.

 Same MPI function is called many times.

 Communication implementation selection

is performed at run-time.

1. Ring sending vs. Binary three sending

2. Synchronous vs. Asynchronous

3. Overlapping vs. Non-overlapping

4. Recursive halving vs. Normal

 Final goal: Implementing a MPI lapper

 No modification of codes for end-user.

•Target Application

•Parallel Sparse Iterative solver (GMRES Method)
•Developed by Dr. H.Kuroda (U. of Tokyo)

•Following performance parameters are auto-tuned
according to input matrix:

1. Selection of preconditioner
(Scaling, Jacobi, …)

2. Adjustment of loop unrolling depth
for sparse matrix multiplication

3. Selection of MPI implementations
(Gather, Overlap, Collective matter, …)

•Experimental environment
•Microsoft Innovation Center (MIC) at Chou-fu

•AMD Athelon 64 X2 Dual, Cell Processor 3800+
(2.01GHz,2GByte RAM)

•Windows CCS, MS-MPI, Visual Studio2005 C++

0

10

20

30

40

1 2 4 8 16

AT OFF AT ON

#Processors

[Sec.]

The Toeplitz Matrix

0

500

1,000

1,500

1 2 4 8

AT OFF AT ON

#Processors

[Sec.]

Time

Over

Buffer

Over-

flow

5 Points Deference Matrix

Maximum 20x speedup

 SaNS (Self-adapting Numerical Software) Project
@ University of Tennessee at Knoxville
 SaNS Agent：

 Provide intelligent components for the behavior of
data, algorithms, and systems

 Adapt computational Grid

 Provide data repository for performance data

 Provide a simple scripting language

 BeBOP (Berkeley Benchmarking and Optimization
Group) Project @ University of California at Berkeley
 OSKI : Optimized Sparse Kernel Interface

 A collection of low-level primitives that provide
automatically tuned computational kernels on sparse
matrices, for use by solver libraries and applications.

 SPIRAL Project @ Carnegie Mellon University
 Software/Hardware Generation for DSP algorithm

38

To establish high productivity on numerical
libraries, auto-tuning facility is needed.
 FIBER is one of the promising frameworks for

establishing high productivity.

 ABCLibScript is the computer language to
describe auto-tuning process based on FIBER
for general applications.

Next generation supercomputers must have..
 complicated architectures (multicore,…)

 more than 10,000 processors

-> we need somehow intelligent and
automated tuning systems.

39

 Auto-Tuning Research Group in JAPAN
 Chair: Toshitsugu Yuba (U. of Electro-comm.)

 Vice Chair: Takahiro Katagiri (U. of Tokyo)

 Reiji Suda (U. of Tokyo)

 Toshiyuki Imamura (U. of Electro-comm.)

 Yusaku Yamamoto (Nagoya U.)

 Ken Naono (HITACHI Ltd.)

 Kentaro Shimizu (U. of Tokyo)

 Hiroyuki Sato (U. of Tokyo)

 Shoji Ito (RIKEN)

 Takeshi Iwashita (Kyoto U.)

 Kazuya Terauchi (Japan Visual Numerics Inc.)

 Masashi Egi (HITACHI Ltd.)

 Takao Sakurai (HITACHI Ltd.)

 Hisayasu Kuroda (U. of Tokyo)
40

If you are interested in ABCLib

project, please visit:

http://www.abc-lib.org/

41

