
Performance of Automatically
Tuned Parallel GMRES�m� Method
on Distributed Memory Machines

Hisayasu KURODA� �� Takahiro KATAGIRI��� and Yasumasa KANADA�

� Department of Information Science� Graduate School of Science�
The University of Tokyo

� Research Fellow of the Japan Society for the Promotion of Science
� Computer Centre Division� Information Technology Center�

The University of Tokyo
������� Yayoi� Bunkyo�ku� Tokyo ������	�� JAPAN
Phone
 ������	�����
��� FAX
 ������������
��

fkuroda� katagiri� kanadag�pi�cc�u�tokyo�ac�jp

Abstract� As far as the presently available public parallel libraries are
concerned� users have to set parameters� such as a selection of algorithms�
an unrolling level� and a method of communication� These parameters
not only depend on execution environment or hardware architecture but
also on a characteristic of the problems� Our primary goal is to solve
two opposite requirements of reducing users parameters and getting high
performance� To attain this goal� an auto�tuning mechanism which auto�
matically selects the optimal code is essential� We developed a software
library which uses GMRES�m� method on distributed memory machines�
the HITACHI SR���� and HITACHI SR����� The GMRES�m� method
is one of the iterative methods to solve large linear systems of equa�
tions� This software library can automatically adjust some parameters
and selects the optimal method to �nd the fastest solution� We show
the performance of this software library and we report a case where our
library is approximately four times as fast as the PETSc library which
is widely used as a parallel linear equation solver�

� Introduction

Linear algebra� in particular the solution of linear systems of equations and
eigenvalue problems� is the basic of general calculations in scienti�c computing�
When a coe�cient matrix of linear systems of equations is large and sparse�
iterative methods are generally used� For example� if a coe�cient matrix is real
symmetric and positive de�nite� the Conjugate Gradient method �CG� is often
used� In the case of a nonsymmetric matrix� there are a number of iterative meth�
ods with lots of variations 	
� ��� Therefore� in the nonsymmetric case� the most
e�cient method is left for to further discussion� In addition� there are a few par�
allel implementations of the iterative methods in the nonsymmetric case� In this

� Candidate to the Best Student Paper Award



paper� we focussed on the GMRES�m� which is improved GMRES�Generalized
Minimal RESidual method�� and developed its library on distributed memory
machines�

The GMRES is one of the Krylov subspace solution methods and �nds a
suitable approximation for the solution x of Ax 
 b by using the minimum
residual approach at every iteration step�

The GMRES�m� restarts the GMRES after each m steps� where m is a
suitably chosen integer value� The original method without restarting is often
called full�GMRES� This restarting reduces both calculation counts and the size
of memory allocation�

This paper is organized as follows� Description of the algorithm of our version
of GMRES�m� in Section �� Section � is about the parameters for auto�tuning�
and how to search for the optimal parameters� In Section �� we show auto�tuned
parameters and execution time of our library using the auto�tuning methodology�
Finally� Section � gives conclusions for this paper�

� The GMRES�m� Algorithm

When given an n�n real matrix A and a real n�vector b� the problem considered
is� Find x which belongs to IRn such that

Ax 
 b � �
�

Equation�
� is a linear system� A is the coe�cient matrix� b is the right�hand
side vector� and x is the vector of unknowns�

Figure 
 shows our version of preconditioned GMRES�m� algorithm� Note
that K in the Figure 
 is a preconditioning matrix and this algorithm uses right�
preconditioning because of the advantage that it only a�ects the operator and
does not a�ect the right�hand side�

��� Parallel implementation of GMRES�m�

The coe�cient matrix A� the vector of unknowns x� the right�hand side vector
b� the temporary vectors vi �m � 
 vectors�� and orthogonalized vector w are
distributed by row�block distribution and each processor element�PE� except
for the last PE has the same number of rows� On the other hand� the matrix H �
the vector s� and the vector c are the same on every PE�

Since the vector x and vi are needed to be gathered on every PE� a temporary
vector of size n� where n is the size of matrix A� is required�

In the parallel implementation� lines �� �� and �� in the Figure 
 which include
matrix�by�vector products and line � in the Figure 
 which includes dot product
require interprocessor communications�

In lines 
���� in the Figure 
 which include QR decomposition by using
Givens rotations� every PE updates the matrix H which holds the same data� It



�
 x��initial guess
�
 r � b�Ax�
�
 for j������ � �
�
 v� � r�jjrjj
	
 e� � jjrjj
�
 for i������ � ��m� �


 w � AK��vi
�
 for k������ � ��i
�
 hk�i � �w� vk�
��
 w � w � hk�ivk
��
 end
��
 hi���i � jjwjj
��
 vi�� � w�hi���i
��
 for k������ � ��i� �

�	


�
hk�i
hk���i

�
�

�
ck sk
�sk ck

��
hk�i
hk���i

�

��
 end

�

 ci �

r
h�
i�i

h�
i�i
�h�

i���i

��
 si � �
hi���i

hi�i

r
h�
i�i

h�
i�i
�h�

i���i

��
 ei�� � �siei
��
 ei � ciei
��
 hi�i � cihi�i � sihi���i
��
 hi���i � ���
��
 If ei�� is small enough then

update �x� �processes �	����
quit

��
 end
�	
 for k������ � ��m� �
��
 yk � H��k �e�� e�� � � � � ek�

T

�

 end

��
 �x � x� �K��
m��X
i��

yivi

��
 r � b�A�x
��
 If jjrjj�jjbjj is small enough quit
��
 x� � �x
��
 end

Fig� �� The preconditioned GMRES�m� algorithm

r� vi� and w are vectors and if i �� j then vi and vj are di�erent vectors� and
not elements of the same vector v� m is the restarting frequency�

seems that holding H is ine�cient� However m is several hundreds at the most
and the decomposition of the matrix H whose size is �m� 
��m is ine�cient
to parallelize� Therefore� the overhead time that every PE updates at the same
time is very small�

� Method for searching parameters

We have developed automatically tuned parallel library by using CG 	��� In
this section description of several tuning factors to be considered in precondi�
tioned GMRES�m� algorithm and methods of tuning parameters automatically
are provided�

Our library automatically sets several parameters to get high performance�
This action is executed after being given a problem� Therefore� our library can
select the best method according to a characteristic of the problem� Our library
provides a lot of source codes� Users only have to compile them once� While our
library code is being executed� the optimal code is selected one after another
automatically�



��� Matrix storage formats

In the sparse matrix formats� we store the nonzero elements by rows� along
with an array of corresponding column numbers and an array of pointers to
the beginning of each row �see Figure ��� It is called as compressed row storage
format�

A 


�
���
a b � �
c d e �
� f g h
� � i j

�
���

rp�	��f����	�����g� �� pointers to the beginning of each row ��
cval�����f�������������������g� �� indices ��
aval�����fa� b� c� d� e� f� g� h� i� jg� �� elements ��

Fig� �� Compressed row storage format

In case that the number of nonzero elements at each row are almost equal�
compressed row storage format was converted to a matrix format whose size of
each row is �xed �see Figure ��� This is called compressed row storage format for
unrolling� Using such a matrix format� we expected to save the execution time
because of the e�ect of unrolling�

cval�����f�����������������������g� �� indices ��
aval�����fa� b� �� c� d� e� f� g� h� i� j� �g� �� elements ��
nsize����f�������g� �� the number of elements of each row��
csize��� �� �xed size ��

Fig� �� Compressed row storage format for unrolling

Before executing the main iteration� the actual time of the matrix�by�vector
product was measured� With this information� we can select the best matrix
storage format�

��� The stride size of loop unrolling for matrix�by�vector products

To perform the matrix�by�vector product at high performance� we should se�
lect the best size of the stride for loop unrolling� This depends on the machine
architectures and optimization level of the compilers�

Our library prepares a large number of loop unrolling codes� For example�
if the number of nonzero elements of a matrix A at each row is smaller than




�� all expanded loop unrolling codes are examined� In addition to unrolling the
inner�loop� we unroll also the outer loop with strides 
� �� �� �� and ��

There are two types of codes� i�e�� a non�prefetch code and a prefetch code�
The non�prefetch code uses indirect access just as it is or entrusts the compiler
with the treatment� The prefetch code takes o� indirect access to the element of
arrays �see Figure ���

Non�prefetch code

�
 do i�����
�
 s � s � a�i� � b�ind�i��
�
 end do

Prefetch code

�
 m�ind���
�
 do i����
�
 s � s � a�i� � b�m�
�
 m�ind�i���
	
 end do
�
 s � s � a���� � b�m�

Fig� �� Non�prefetch code and prefetch code

As for the prefetch codes� we unroll the outer loop so that the sizes of the
stride can be 
� �� �� and �� In total� there are � ways of the unrolling codes in
each of the number of nonzero elements at each row�

Same as in the case of the matrix format� actual time of the matrix�by�vector
product was measured in order to select the best unrolling code in the above�

��� How to comunicate in matrix�by�vector products

In matrix�by�vector products� we need a gather operation� Because the elements
of a vector are distributed on all of the PEs� We can select the following �ve
implementations for the communications�

No dependence on the location of the nonzero elements of matrix A�


� Use MPI Allgather function from the MPI library�
�� Gather in 
 PE then broadcast with MPI Bcast function�

Dependence on the location of the nonzero elements of matrix A�

�� First use MPI Isend function� next use MPI Irecv function�
�� First use MPI Irecv function� next use MPI Isend function�
�� Use MPI Send and MPI Recv functions�

A communication table is used in the method from � to �� This table indicates
the relation between a element index of a vector and a PE number which requires
the indexed value� This relation is created from nonzero element indices of a
matrix A� By using this communication table� communication tra�c becomes
very small because an element is transmitted to a PE which requires it� We
communicate all of the elements from minimal index to maximal index to other



PEs so that we need only one communication step� In the case that nonzero
elements of matrix A are located in limited parts� using the communication
table is quite e�ective�

In the method �� since both MPI Send and MPI Recv functions are block�
ing communication� execution of other instructions is suspended� However this
method saves starting time for the communication� If the total amount of com�
municated data is small� we can get high performance by selecting the order of
communication�

As in the case of the matrix format� the actual time of the matrix�by�vector
product was measured and the best way from the alternatives above was selected�

��� Restarting frequency

The larger the restarting frequency m� the smaller the iteration count we need�
However if m is large� the execution time of one iteration increases with the
increment of iteration counts� Because in the orthogonalization� we must calu�
culate a new vector to be orthogonalized to all vectors which have caluculated
by earlier iteration �lines ��

 in the Figure 
�� The total amount of calculations
for the orthogonalization is proportional to the square of the iteration counts�

There are many ways to decide on m 	��� In our implementation we change
the value of m dynamically 	��� Here� let mmax be maximal restarting frequency�
We decide on the value of m as follows�

�
� m
� �initial value��
��� Add � to m if m � mmax�
��� Back to �
��

Our library sets 
�� to mmax� If the library cannot allocate memory� it sets
the maximal size to mmax within the maximum permissible memory allocation�
The reason why we decide mmax is to save the amount of calculation for the
orthogonalization�

��	 Gram�Schmidt orthogonalization

Modi�ed Gram�Schmidt orthogonalization �MGS� is often used on single proces�
sor machines because of its smaller computational error� However on distributed
memory machines� it is not e�cient because of the frequent synchronization
especially in the case of a large iteration count�

On the other hand� classical Gram�Schmidt orthogonalization �CGS� is ef�
�cient on distributed memory machines because the synchronization is needed
only once�

In case of using CGS� lines ��

 in the Figure 
 are replaced as shown in
Figure ��

CGS has less in computational error than MGS� Therefore� our library pro�
vides iterative re�nement Gram�Schmidt orthogonalization 	�� �see Figure ���



�
 for k������ � ��i
�
 hk�i � �w� vk�
�
 end
�
 for k������ � ��i
	
 w � w � hk�ivk
�
 end

Fig� �� Classical Gram�Schmidt orthogonalization

�
 for k������ � ��i
�
 hk�i � �w� vk�
�
 end
�
 for k������ � ��i
	
 w � w � hk�ivk
�
 end


 for k������ � ��i
�
 �hk � �w� vk�
�
 hk�i � hk�i � �hk
��
 end
��
 for k������ � ��i
��
 w � w � �hkvk
��
 end

Fig� 	� Iterative re�nement Gram�Schmidt orthogonalization

The execution time by this method is twice as large as primary CGS� However
it is comparable to MGS in computational error� In our library� we measure
the orthogonalization time for calculating a new vector to be orthogonalized to
mmax�� vectors� We then select the fastest method� MGS or CGS�

On single processor machines� the MGS is advantageous to the CGS because
of localization of memory access� On the other hand� on distributed memory ma�
chines� it is not clear which is the best because we must consider the combination
of cache memory size� the number of vectors� the number of PEs� interprocessor
communications speed and so on�

When the convergence is not improved at two straight steps� we change to
the iterative re�nement Gram�Schmidt orthogonalization�

��
 Preconditioning

There are many occasions and applications where iterative methods fail to con�
verge or converge very slowly� Therefore� it is important to apply preconditioning�

In our library� we apply diagonal scaling to a coe�cient matrix A� In this case�
we expect that not only it helps to reduce the condition number and often has
a bene�cial in�uence on the convergence behavior but also the computational
complexity and memory allocation are reduced by �xing to 
 in all diagonal
elements� In addition to the diagonal scaling� we can select the following three
implementations�




� No preconditioning�
�� Polynomial Preconditioning 	���
�� Block incomplete LU decomposition 	���

Let A be the scaled matrix such that diag�A� 
 I �
In case �� the matrix A can be written A 
 I�B� and A�� can be evaluated

in a Neumann series as

A�� 
 �I �B��� 
 I �B �B� �B� � � � � � ���

We take a truncated Neumann series as the preconditioner� e�g� approximat�
ing A�� by K�� 
 I � B� In this case� K�� is very similar to A but plus and
minus signs of elements of K�� are reversed except for the diagonal elements�
Since this preconditioning does not need extra memory allocation which holds
matrix I � B data� in particular GMRES�m� which requires a lot of memory
allocation� it is very useful�

However� approximation of A�� by I �B is e�cient only when matrix A is
diagonally dominant� namely� spectral radius of B satis�es the relations ��B� �

� If ��B� � 
 then I �B does not approximate A���

In the preconditioner �� our library employs zero �ll�in ILU factorization
called as ILU��� on each individual block� which is diagonal submatrix on each
PE� In this case� we assume K 
 LU �

In lines � and �� in the the Figure 
� there is the matrix�by�vector product
in the form of K��r� When we assume q 
 �LU���r� we can solve linear system
of equations LUq 
 r� where q is the vector of unknowns�

To solve q of the linear system is as follows�

Lz 
 r �Forward substitution�
Uq 
 z �Backward substitution��

���

where z is a temporary vector� As shown above� it is possible to calculate K��r�
If restarting frequency m is large� the preconditioning is more e�cient� Be�

cause the overhead time of preconditioning depends on the whole iteration count
to converge� setting m at a large value reduces the total iteration count�

The best preconditioning selection is as follows� We iterate the main loop
�lines ���� in the Figure 
� for m 
 � by using every method� Next� we select the
method whose relative decrease of the residual norm �jjr�jj�jjr�jj� is the smallest�
Note that we do not consider the execution time� we employ the method which
reduces the residual norm the most after the same number of iterations�

� Experimental results

We implemented our auto�tuning methodology on the HITACHI SR���
 and
HITACHI SR�����

The HITACHI SR���
 system is a distributed memory� message�passing par�
allel machine of the MIMD class� It is composed of 
��� PEs� each having ���



Megabytes of main memory� interconnected via a communication network hav�
ing the topology of a three�dimensional hyper�crossbar� The peak interprocessor
communications bandwidth is ��� Mbytes�s in each direction� We used the HI�
TACHI Optimized Fortran�� V�������D compiler� and compile option we used
was �W���opt�o�ss��fold�	���� We also used the HITACHI Optimized C compiler�
and compile option we used was 
O� �Wc��hD	�

The HITACHI SR���� system is a distributed memory� message�passing par�
allel machine of the MIMD class like the HITACHI SR���
� It is composed of

�� nodes� each having � Instruction Processors �IPs�� � Gigabytes of main
memory� interconnected via a communication network having the topology of
a three�dimensional hyper�crossbar� The peak interprocessor communications
bandwidth is 
 Gbytes�s in each direction� We used the HITACHI Optimized
Fortran�� V�
��� compiler� and compile option we used was �W���opt�o����fold�	���
�noparallel� We also used the HITACHI Optimized C compiler� and compile op�
tion we used was 
O� �Wc��hD	 �noparallel�

We evaluated performance with the following conditions�

� Convergence result � jjrkjj�jjr�jj � 
��� 
����

� Initial guess � x� 
 ��� �� � � � � ��T

� Precision type � double

��� Test problems

Evaluation on our library by employing three problems whose maximal number
of nonzero elements of a matrix A at each row is �� �� and ��

Problem �
The coe�cient matrix A is a Toeplitz matrix such as

A 


�
�����

� 

� � 

R � � 

R � � � � �
� � � � � � � � �

�
����� �

where R 
 
��� 
��� and ���� The right�hand side vector is b 
 �
� 
� � � � � 
�T �
The size of matrix A is ����������

Problem �
An elliptic boundary value problem of partial di�erential equation�

�uxx � uyy �Rux 
 g�x� y� �
u�x� y�j�� 
 
 � xy �

where the region is � 
 	�� 
� � 	�� 
�� and R 
 
��� The right�hand side
vector b is set to the exact solution of u 
 
 � xy� We discretize the region
by using a ��point di�erence scheme on a ������� mesh� The size of matrix
A is 
�������

Problem �
An elliptic boundary value problem of partial di�erential equation�



�uxx � uyy � uzz �Rux 
 g�x� y� z� �
u�x� y�j�� 
 ��� �

where the region is� 
 	�� 
��	�� 
��	�� 
�� and R 
 
�� and 
����� The right�
hand side vector b is set to the exact solution of u 
 exyz sin�	x�� sin�	y��
sin�	z�� We discretize the region by using a ��point di�erence scheme on a
��� ��� �� mesh� The size of matrix A is �
������

��� The results

Tables 
�� show the execution time on each problem in the case of no auto�
tuning� auto�tuning� and using PETSc	��� In addition� they show auto�tuned
parameters in the auto�tuning case�

The calculation time of the QR decomposition in the lines 
���� of Figure

 was less than 
 second on every problem� Even though each PE contains the
QR decomposition� this overhead time was very small and it can be ignored�

Following parameters were set as the sample of the no auto�tuning case� These
are common parameters which were used comparison with the no auto�tuning
case and the auto�tuning case�

Matrix storage format � Compressed row storage format for unrolling�
Unrolling � Non�prefetch and no unrolling code�
Communication � Use MPI Allgather funuction from the MPI library�
Restarting frequency � �� ��xed�
Orthogonalization � Iterative re�nement Gram�Schmidt�
Preconditioning � None�

In case of the auto�tuning version the leftmost explanation has the following
meaning�

iter� � Iteration count�
time � Total execution time including auto�tuning� �sec�
unro� � Unrolling type� For example� P����� means prefetch code�

two outer loops expanded� and three inner loops expanded�
On the other hand� N����� means non�prefetch code�

com� � Communication type�
Send � � � use MPI Send and MPI Recv in pairs�
Isend � � � use MPI Isend and MPI Irecv in pairs�
Irecv � � � use MPI Irecv and MPI Isend in pairs�

orth� � Orthogonalization type�
prec� � Preconditioning type�

I �B � � � polynomial preconditioning�
BILU � � � block incomplete LU decomposition�

The matrix storage format in Tables 
�� has been omitted since the com�
pressed row storage format for unrolling is selected in all problems�

As for PETSc� we used it with almost default parameter values� For example�
the restarting frequency is ��� the technique for orthogonalization is the iterative
re�nement Gram�Schmidt method and so on� Only the convergence is decided
to be set 
���� in order to compare with our library�



Table �� The results for problem �

�a� R���� SR��
�

PE � �� �� �� ���

No auto�tuning

iter� �� �� �� �� ��
time ���� ���
 �	�� ���� ����

Auto�tuning

iter� �� �� �� �� ��
time ���	 ���� ���� ��� 	��
unro� N����� N����� N����� N����� P�����
com� Send Send Irecv Irecv Send
orth� MGS MGS CGS CGS CGS
prec� BILU BILU BILU BILU BILU

PETSc

iter� �� �� �� �� ��
time ���� �	�� ���	 ���� ���

�b� R���	 SR��
�

PE � �� �� �� ���

No auto�tuning

iter� �� �� �� �� ��
time ����� �	�	 	��
 �	�
 ����

Auto�tuning

iter� 	� �� �� �� ��
time� 
��	 ���� ���� ��� 	�

unro� N����� N����� N����� N����� N�����
com� Send Send Irecv Send Send
orth� MGS MGS CGS CGS CGS
prec� BILU None None None None

PETSc

iter� 		 	� 	
 	�
time fail� ����� 
	�	 ���� ���


�c� R���� SR��
�

PE � �� �� �� ���

No auto�tuning

iter� ��
 ��� ��� ��� ���
time �	��� �

�� ����� �	��� �����

Auto�tuning

iter� ��� ��� ��� ��� ���
time ����� ���� �	�� ���� ���

unro� N����� N����� N����� N����� P�����
com� Send Send Send Send Send
orth� MGS MGS CGS CGS CGS
prec� None None None None None

PETSc

iter�
time fail� fail� fail� fail� fail�

�d� R���� SR�




IP � �� �� �� ���

No auto�tuning

iter� �� �� �� �� ��
time �	�� ���� ���� ���� �	��

Auto�tuning

iter� �� �� �� �� ��
time ���� ���� 
�� 	�� 	��
unro� N����� P����� N����� N����� N�����
com� Send Send Send Send Irecv
orth� MGS MGS CGS CGS CGS
prec� BILU BILU BILU BILU BILU

�e� R���	 SR�




IP � �� �� �� ���

No auto�tuning

iter� �� �� �� �� ��
time 	��
 ���� ���� ���� 	���

Auto�tuning

iter� 	� �� �� �� ��
time ���
 ���� 
�� 	�
 	�

unro� N����� P����� N����� N����� N�����
com� Irecv Send Send Send Send
orth� MGS CGS CGS CGS CGS
prec� BILU None None None None

�c� R���� SR�




IP � �� �� �� ���

No auto�tuning

iter� ��� ��� ��� ��� ���
time ����� ����� ��	�� ����� �
���

Auto�tuning

iter� ��� ��� ��� ��� ���
time 	��� �
�� ���� ��� ���
unro� N����� N����� N����� N����� N�����
com� Irecv Irecv Send Send Irecv
orth� MGS CGS CGS CGS CGS
prec� None None None None None



Table �� The results for problem �

�f� R���� SR��
�

PE � �� �� �� ���

No auto�tuning

iter� ����� ����� ����� ����� �����
time ���	�
 
���� 	���� 	���� �����

Auto�tuning

iter� ���� ���� ���� �	�� ���

time ���
 ���� ���� ���� 
��
unro� P���	� P���	� P���	� P���	� P���	�
com� Send Send Send Send Send
orth� CGS CGS CGS CGS CGS
prec� BILU BILU BILU BILU BILU

PETSc

iter� ���� ���� ���� ���� ����
time 	
��� ����� �	��
 ���� 	
��

�a� R���� SR�




IP � �� �� �� ���

No auto�tuning

iter� ����� ����� ����� ����� �����
time ����
 ����	 �
��� ��	��

Auto�tuning

iter� ���� ���� ���� �	�� ���

time �	�� ���� ���� 
�� ��	
unro� P���	� P���	� P���	� P���	� N���	�
com� Send Send Send Send Send
orth� CGS CGS CGS CGS CGS
prec� BILU BILU BILU BILU BILU

Table �� The results for problem �

�a� R���� SR��
�

PE � �� �� �� ���

No auto�tuning

iter� ���	 ���	 ���	 ���	 ���	
time �	��� ����� ���� ���� ����

Auto�tuning

iter� ��� ��� ��
 ��
 ��

time ���� ���	 ���	 
�� ��

unro� P���
� P���
� P���
� P���
� P���
�
com� Isend Isend Isend Isend Isend
orth� MGS CGS CGS CGS CGS
prec� BILU BILU I �B I �B I �B

PETSc

iter� ��� �	� ��� ��	 	��
time ����� ���� �
�� ���� �	��

�b� R������ SR��
�

PE � �� �� �� ���

No auto�tuning

iter� ��� ��� ��� ��� ���
time ����� 
��� 	��� ���
 ����

Auto�tuning

iter� �
� ��� ��
 ��� �
�
time �	�
 �	�� ���� ���� ���
unro� P���
� P���
� P���
� P���
� P���
�
com� Isend Isend Isend Irecv Isend
orth� MGS CGS CGS CGS CGS
prec� BILU BILU BILU BILU BILU

PETSc

iter� ��� ��� ��� ��� �
�
time �	��� ����� �	�� ���
 �
��

�c� R���� SR��
�

IP � �� �� �� ���

No auto�tuning

iter� ���	 ���	 ���	 ���	 ���	
time ����� ���� ���� ���	

Auto�tuning

iter� ��� ��� ��
 ��
 ��

time ���� ���	 ��� ��� ���
unro� P���
� P���
� P���
� P���
� P���
�
com� Irecv Isend Isend Irecv Irecv
orth� CGS CGS CGS CGS CGS
prec� BILU BILU I �B I �B I �B

�d� R������ SR��
�

IP � �� �� �� ���

No auto�tuning

iter� 	�� 	�� 	�� 	�� 	��
time 	��� ���� ���� �	��

Auto�tuning

iter� �
� ��� ��
 ��� �
�
time ���
 ���� 
�� 
�� ���
unro� P���
� P���
� P���
� P���
� P���
�
com� Irecv Irecv Isend Irecv Irecv
orth� CGS CGS CGS CGS CGS
prec� BILU BILU BILU BILU BILU



Comparison with no auto�tuning and auto�tuning If the problem size
is large� the execution time of auto�tuning is relatively smaller as compared to
the total execution time� Tables 
�� show that auto�tuning method works very
well�

Unrolling type In problem 
� non�prefetch code is selected as the unrolling
type� In the other problems� prefetch code is selected� In problem 
� our library
often selects the code of ��unrolled outer loop and ��unrolled inner loop be�
cause loop size is small� In problem �� it often selects no expanded code for the
outer loop� These results mean that auto�tuning behavior depends on machine
architectures and compilers�

Communication type Since the nonzero elements of a coe�cient matrix
A was located at near diagonal intensively in all problems� the communication
table usage was selected� In the problems 
 and �� since communication data
size was small� the method using MPI Send and MPI Recv in pairs was selected
so often� In the problem �� since communication data size was large� the method
using MPI Isend and MPI Irecv in pairs was selected�

Orthogonalization type If the number of PEs became large� the selected
method was changed from the MGS into the CGS� However the number of PEs
where the changes happen is di�erent in each problem� For example it changed
into the CGS for �� PEs in problem 
� for � PEs in problem �� and for 
� PEs
in problem ��

Preconditioning type In many cases� BILU was selected as preconditioner�
Table � shows that I �B is included in the selected method� Because when the
number of PEs is large� preconditioning e�ect of using BILU is small� On the
other hand� preconditioning with I � B is invariable and it has nothing to do
with the change of the number of PEs�

Comparison to the PETSc In the Tables 
 �b� and 
 �c�� the PETSc
failed to converge� In this case� users have to set parameters suitably� On the
whole� our library is approximately four times as fast as the PETSc library�

Scalability The execution time is reduced with the number of PEs� Speed�
ups for some problems are shown in Figure ��

� Conclusion

Selecting optimal codes to get high performance is very important� It brings
not only e�ective utilization of computer resource but also highly user friendly
library�

How we can get high performance without setting parameters in detail will
be the center of public interest�

Our library is open source and available on�line from out project home page
at http���www�hints�org�� Evaluation on the other parallel machines are part of
the future work�



10

100

1000

8 16 32 64 128

T
im

e 
in

 s
ec

on
ds

Number of PEs

No auto-tuning(SR2201)

Auto-tuning(SR2201)
PETSc(SR2201)

No auto-tuning(SR8000)
Auto-tuning(SR8000)4

10

100

1000

8 16 32 64 128

T
im

e 
in

 s
ec

on
ds

Number of PEs

No auto-tuning(SR2201)
Auto-tuning(SR2201)

PETSc(SR2201)
No auto-tuning(SR8000)

Auto-tuning(SR8000)

4

�a� Problem �� R���� �b� Problem �� R����

Fig� �� Speed�ups in all problems

Acknowledgments

The authors are much obliged to Dr� Aad van der Steen at the Utrecht University
for giving us useful comments in this paper� This research is partly supported
by Grant�in�Aid for Scienti�c Research on Priority Areas �Discovery Science�
from the Ministry of Education� Science and Culture� Japan�

References

�� J�J�Dongarra� I�S�Du�� D�C�Sorensen� H�A�van der Vorst
 Numerical Linear Alge�
bra for High�Performance Computers� SIAM �������

�� Y�Saad
 Iterative Methods for Sparse Linear Systems� PWS Publishing Company
�������

�� H�Kuroda� T�Katagiri� Y�Tsukuda� Y�Kanada
 Constructing Automatically Tuned
Parallel Numerical Calculation Library � A Case of Symmetric Sparse Linear
Equations Solver �� Proc� ��th National Convention IPSJ� No��� pp����� � ����
������ in Japanese�

�� S�Balay� W�D�Gropp� L�C�McInnes� B�F�Smith
 PETSc ��� Users Manual� ANL�
�	��� � Revision ������� Argonne National Laboratory �������

	� N� Tsuno� T� Nodera
 The Speedup of the GMRES�m� Method Using the Early
Restarting Procedure� Trans�IPS�Japan� Vol����No���pp��
����

� ������ in
Japanese�

�� H� Kuroda� Y� Kanada
 Performance of Automatically Tuned Parallel Sparse Lin�
ear Equations Solver� IPSJ SIG Notes ���HPC�
���� pp� ����� ������ in Japanese�


� O�G�Johnson� C�A�Micchelli� G�Paul
 Polynomial Preconditioners for Conjugate
Gradient Calculations� SIAM J� Numer� Anal�� Vol����No�� �������

�� J�S�Kowalik� S�P�Kumar
 An E�cient Parallel Block Conjugate Gradient Method
for Linear Equations� Proc� ���� Int� Conf� Par� Proc�� pp� �
�	� �������


