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Abstract. As far as the presently available public parallel libraries are
concerned, users have to set parameters, such as a selection of algorithms,
an unrolling level, and a method of communication. These parameters
not only depend on execution environment or hardware architecture but
also on a characteristic of the problems. Our primary goal is to solve
two opposite requirements of reducing users parameters and getting high
performance. To attain this goal, an auto-tuning mechanism which auto-
matically selects the optimal code is essential. We developed a software
library which uses GMRES(m) method on distributed memory machines,
the HITACHI SR2201 and HITACHI SR8000. The GMRES(m) method
is one of the iterative methods to solve large linear systems of equa-
tions. This software library can automatically adjust some parameters
and selects the optimal method to find the fastest solution. We show
the performance of this software library and we report a case where our
library is approximately four times as fast as the PETSc library which
is widely used as a parallel linear equation solver.

1 Introduction

Linear algebra, in particular the solution of linear systems of equations and
eigenvalue problems, is the basic of general calculations in scientific computing.
When a coefficient matrix of linear systems of equations is large and sparse,
iterative methods are generally used. For example, if a coefficient matrix is real
symmetric and positive definite, the Conjugate Gradient method (CG) is often
used. In the case of a nonsymmetric matrix, there are a number of iterative meth-
ods with lots of variations [1,2]. Therefore, in the nonsymmetric case, the most
efficient method is left for to further discussion. In addition, there are a few par-
allel implementations of the iterative methods in the nonsymmetric case. In this
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paper, we focussed on the GMRES(m) which is improved GMRES(Generalized
Minimal RESidual method), and developed its library on distributed memory
machines.

The GMRES is one of the Krylov subspace solution methods and finds a
suitable approximation for the solution x of Az = b by using the minimum
residual approach at every iteration step.

The GMRES(m) restarts the GMRES after each m steps, where m is a
suitably chosen integer value. The original method without restarting is often
called full-GMRES. This restarting reduces both calculation counts and the size
of memory allocation.

This paper is organized as follows. Description of the algorithm of our version
of GMRES(m) in Section 2. Section 3 is about the parameters for auto-tuning,
and how to search for the optimal parameters. In Section 4, we show auto-tuned
parameters and execution time of our library using the auto-tuning methodology.
Finally, Section 5 gives conclusions for this paper.

2 The GMRES(m) Algorithm

When given an n x n real matrix A and a real n-vector b, the problem considered
is: Find 2 which belongs to IR"™ such that

Az =b. (1)

Equation(1) is a linear system. A is the coefficient matrix, b is the right-hand
side vector, and z is the vector of unknowns.

Figure 1 shows our version of preconditioned GMRES(m) algorithm. Note
that K in the Figure 1 is a preconditioning matrix and this algorithm uses right-
preconditioning because of the advantage that it only affects the operator and
does not affect the right-hand side.

2.1 Parallel implementation of GMRES(m)

The coefficient matrix A, the vector of unknowns z, the right-hand side vector
b, the temporary vectors v; (m + 1 vectors), and orthogonalized vector w are
distributed by row-block distribution and each processor element(PE) except
for the last PE has the same number of rows. On the other hand, the matrix H,
the vector s, and the vector ¢ are the same on every PE.

Since the vector  and v; are needed to be gathered on every PE, a temporary
vector of size n, where n is the size of matrix A, is required.

In the parallel implementation, lines 2, 7, and 29 in the Figure 1 which include
matrix-by-vector products and line 9 in the Figure 1 which includes dot product
require interprocessor communications.

In lines 14-22 in the Figure 1 which include QR decomposition by using
Givens rotations, every PE updates the matrix H which holds the same data. It
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Fig. 1. The preconditioned GMRES(m) algorithm

r, v;, and w are vectors and if ¢ # j then v; and v; are different vectors, and
not elements of the same vector v. m is the restarting frequency.

seems that holding H is inefficient. However m is several hundreds at the most
and the decomposition of the matrix H whose size is (m + 1) x m is inefficient
to parallelize. Therefore, the overhead time that every PE updates at the same
time is very small.

3 Method for searching parameters

We have developed automatically tuned parallel library by using CG [3]. In
this section description of several tuning factors to be considered in precondi-
tioned GMRES(m) algorithm and methods of tuning parameters automatically
are provided.

Our library automatically sets several parameters to get high performance.
This action is executed after being given a problem. Therefore, our library can
select the best method according to a characteristic of the problem. Our library
provides a lot of source codes. Users only have to compile them once. While our
library code is being executed, the optimal code is selected one after another
automatically.



3.1 Matrix storage formats

In the sparse matrix formats, we store the nonzero elements by rows, along
with an array of corresponding column numbers and an array of pointers to
the beginning of each row (see Figure 2). It is called as compressed row storage
format.

ab00
cde0
Ofgh
00¢y

rp[5]={0,2,5,8,10}; /* pointers to the beginning of each row */
cval[10]={0,1,0,1,2,1,2,3,2,3};  /* indices */
aval[10]={a, b,c,d, e, f, g, h,1,7}; /* elements */

Fig. 2. Compressed row storage format

In case that the number of nonzero elements at each row are almost equal,
compressed row storage format was converted to a matrix format whose size of
each row is fixed (see Figure 3). This is called compressed row storage format for
unrolling. Using such a matrix format, we expected to save the execution time
because of the effect of unrolling.

cval[12]={0,1,0,0,1,2,1,2,3,2,3,0}; /* indices */
aval[12]={a, b,0,c,d, ¢, f,g,h,1,7,0}; /* elements */
nsize[4]={2,3,3,2}; /* the number of elements of each row*/
csize=3; /* fixed size */

Fig. 3. Compressed row storage format for unrolling

Before executing the main iteration, the actual time of the matrix-by-vector
product was measured. With this information, we can select the best matrix
storage format.

3.2 The stride size of loop unrolling for matrix-by-vector products

To perform the matrix-by-vector product at high performance, we should se-
lect the best size of the stride for loop unrolling. This depends on the machine
architectures and optimization level of the compilers.

Our library prepares a large number of loop unrolling codes. For example,
if the number of nonzero elements of a matrix A at each row is smaller than



10, all expanded loop unrolling codes are examined. In addition to unrolling the
inner-loop, we unroll also the outer loop with strides 1, 2, 3, 4, and 8.

There are two types of codes, i.e., a non-prefetch code and a prefetch code.
The non-prefetch code uses indirect access just as it is or entrusts the compiler
with the treatment. The prefetch code takes off indirect access to the element of
arrays (see Figure 4).

Non-prefetch code Prefetch code
1: do i=1,10 : m=ind(1)
2: s=s+a(i) * b(ind(i)) : do i=1,9
3: end do s=s+ a(i) * b(m)

: end do

1
2
3
4:  m=ind(i+1)
5
6: s =s + a(10) * b(m)

Fig. 4. Non-prefetch code and prefetch code

As for the prefetch codes, we unroll the outer loop so that the sizes of the
stride can be 1, 2, 3, and 4. In total, there are 9 ways of the unrolling codes in
each of the number of nonzero elements at each row.

Same as in the case of the matrix format, actual time of the matrix-by-vector
product was measured in order to select the best unrolling code in the above.

3.3 How to comunicate in matrix-by-vector products

In matrix-by-vector products, we need a gather operation. Because the elements
of a vector are distributed on all of the PEs. We can select the following five
implementations for the communications.

No dependence on the location of the nonzero elements of matrix A:

1. Use MPI_Allgather function from the MPI library.
2. Gather in 1 PE then broadcast with MPI_Bcast function.

Dependence on the location of the nonzero elements of matrix A:

3. First use MPI_Isend function, next use MPI_Irecv function.
. First use MPI_Irecv function, next use MPI_Isend function.
5. Use MPI_Send and MPI_Recv functions.

S

A communication table is used in the method from 3 to 5. This table indicates
the relation between a element index of a vector and a PE number which requires
the indexed value. This relation is created from nonzero element indices of a
matrix A. By using this communication table, communication traffic becomes
very small because an element is transmitted to a PE which requires it. We
communicate all of the elements from minimal index to maximal index to other



PEs so that we need only one communication step. In the case that nonzero
elements of matrix A are located in limited parts, using the communication
table is quite effective.

In the method 5, since both MPI_Send and MPI_Recv functions are block-
ing communication, execution of other instructions is suspended. However this
method saves starting time for the communication. If the total amount of com-
municated data is small, we can get high performance by selecting the order of
communication.

As in the case of the matrix format, the actual time of the matrix-by-vector
product was measured and the best way from the alternatives above was selected.

3.4 Restarting frequency

The larger the restarting frequency m, the smaller the iteration count we need.
However if m is large, the execution time of one iteration increases with the
increment of iteration counts. Because in the orthogonalization, we must calu-
culate a new vector to be orthogonalized to all vectors which have caluculated
by earlier iteration (lines 8-11 in the Figure 1). The total amount of calculations
for the orthogonalization is proportional to the square of the iteration counts.

There are many ways to decide on m [5]. In our implementation we change
the value of m dynamically [6]. Here, let m,.x be maximal restarting frequency.
We decide on the value of m as follows:

(1) m=2  (initial value).
(2) Add 2 to m if m < Mupax-
(3) Back to (1).

Our library sets 128 to mmax. If the library cannot allocate memory, it sets
the maximal size to Mpyax within the maximum permissible memory allocation.
The reason why we decide mpmax is to save the amount of calculation for the
orthogonalization.

3.5 Gram-Schmidt orthogonalization

Modified Gram-Schmidt orthogonalization (MGS) is often used on single proces-
sor machines because of its smaller computational error. However on distributed
memory machines, it is not efficient because of the frequent synchronization
especially in the case of a large iteration count.

On the other hand, classical Gram-Schmidt orthogonalization (CGS) is ef-
ficient on distributed memory machines because the synchronization is needed
only once.

In case of using CGS, lines 8-11 in the Figure 1 are replaced as shown in
Figure 5.

CGS has less in computational error than MGS. Therefore, our library pro-
vides iterative refinement Gram-Schmidt orthogonalization [4] (see Figure 6).



1: for k=0,1,---¢

2: hi; = (w,vg)
3: end

4: for k=0,1,---¢

5: w=w— hg,;vk
6: end

Fig. 5. Classical Gram-Schmidt orthogonalization

1: for k=0,1,-- -,

2: hi,; = (w,vg)

3: end

4: for k=0,1,-- -,

5: w=w— hy;vg

6: end

T for k=0,1,--,i

8: hi = (w,vk)

9: hi,i = hi:+ he
10: end
11: for k=0,1,-- -,
12: w=w — iLk’Uk
13: end

Fig. 6. Iterative refinement Gram-Schmidt orthogonalization

The execution time by this method is twice as large as primary CGS. However
it is comparable to MGS in computational error. In our library, we measure
the orthogonalization time for calculating a new vector to be orthogonalized to
Mmax/2 vectors. We then select the fastest method, MGS or CGS.

On single processor machines, the MGS is advantageous to the CGS because
of localization of memory access. On the other hand, on distributed memory ma-
chines, it is not clear which is the best because we must consider the combination
of cache memory size, the number of vectors, the number of PEs, interprocessor
communications speed and so on.

When the convergence is not improved at two straight steps, we change to
the iterative refinement Gram-Schmidt orthogonalization.

3.6 Preconditioning

There are many occasions and applications where iterative methods fail to con-
verge or converge very slowly. Therefore, it is important to apply preconditioning.

In our library, we apply diagonal scaling to a coefficient matrix A. In this case,
we expect that not only it helps to reduce the condition number and often has
a beneficial influence on the convergence behavior but also the computational
complexity and memory allocation are reduced by fixing to 1 in all diagonal
elements. In addition to the diagonal scaling, we can select the following three
implementations.



1. No preconditioning.
2. Polynomial Preconditioning [7].
3. Block incomplete LU decomposition [§].

Let A be the scaled matrix such that diag(A) = I.
In case 2, the matrix A can be written A = I — B, and A~! can be evaluated
in a Neumann series as

At =(I-B)y'=I+B+B*+B*+--- . (2)

We take a truncated Neumann series as the preconditioner, e.g. approximat-
ing A= by K=! = I + B. In this case, K~! is very similar to A but plus and
minus signs of elements of K ~! are reversed except for the diagonal elements.
Since this preconditioning does not need extra memory allocation which holds
matrix I + B data, in particular GMRES(m) which requires a lot of memory
allocation, it is very useful.

However, approximation of A~! by I + B is efficient only when matrix A is
diagonally dominant, namely, spectral radius of B satisfies the relations p(B) <
1. If p(B) > 1 then I + B does not approximate A~1.

In the preconditioner 3, our library employs zero fill-in ILU factorization
called as ILU(0) on each individual block, which is diagonal submatrix on each
PE. In this case, we assume K = LU.

In lines 7 and 28 in the the Figure 1, there is the matrix-by-vector product
in the form of K ~'r. When we assume ¢ = (LU) !r, we can solve linear system
of equations LUq = r, where ¢ is the vector of unknowns.

To solve ¢ of the linear system is as follows.

Lz =r (Forward substitution)
Uq = z (Backward substitution),

(3)

where z is a temporary vector. As shown above, it is possible to calculate K ~1r.

If restarting frequency m is large, the preconditioning is more efficient. Be-
cause the overhead time of preconditioning depends on the whole iteration count
to converge, setting m at a large value reduces the total iteration count.

The best preconditioning selection is as follows. We iterate the main loop
(lines 6-24 in the Figure 1) for m = 2 by using every method. Next, we select the
method whose relative decrease of the residual norm (||rz||/||70]|) is the smallest.
Note that we do not consider the execution time, we employ the method which
reduces the residual norm the most after the same number of iterations.

4 Experimental results

We implemented our auto-tuning methodology on the HITACHI SR2201 and
HITACHI SR8000.

The HITACHI SR2201 system is a distributed memory, message-passing par-
allel machine of the MIMD class. It is composed of 1024 PEs, each having 256



Megabytes of main memory, interconnected via a communication network hav-
ing the topology of a three-dimensional hyper-crossbar. The peak interprocessor
communications bandwidth is 300 Mbytes/s in each direction. We used the HI-
TACHI Optimized Fortran90 V02-06-/D compiler, and compile option we used
was - W0, opt(o(ss),fold(1))’. We also used the HITACHI Optimized C compiler,
and compile option we used was +04 -We,-hD1.

The HITACHI SR8000 system is a distributed memory, message-passing par-
allel machine of the MIMD class like the HITACHI SR2201. It is composed of
128 nodes, each having 8 Instruction Processors (IPs), 8 Gigabytes of main
memory, interconnected via a communication network having the topology of
a three-dimensional hyper-crossbar. The peak interprocessor communications
bandwidth is 1 Gbytes/s in each direction. We used the HITACHI Optimized
Fortran90 V01-00 compiler, and compile option we used was - W0, ’opt(o(4),fold(1))’
-noparallel. We also used the HITACHI Optimized C compiler, and compile op-
tion we used was +04 -Wc,-hD1 -noparallel.

We evaluated performance with the following conditions:

— Convergence result : ||r|]/]|ro|| < 1.0 x 10712
— Initial guess : o = (0,0,---,0)T
— Precision type : double

4.1 Test problems

Evaluation on our library by employing three problems whose maximal number
of nonzero elements of a matrix A at each row is 3, 5, and 7.
Problem 1
The coefficient matrix A is a Toeplitz matrix such as

1

02
A=|RO
R

where R = 1.0, 1.5, and 2.0. The right-hand side vector is b = (1,1,---,1)7.
The size of matrix A is 4,000,000.

Problem 2
An elliptic boundary value problem of partial differential equation:

—Uzz _uyy +Rua: = g($7y) 9
u(z,y)|02 =1+2ay ,

where the region is 2 = [0,1] x [0,1], and R = 1.0. The right-hand side
vector b is set to the exact solution of u = 1 4+ xy. We discretize the region
by using a 5-point difference scheme on a 400 x 400 mesh. The size of matrix
A is 160,000.

Problem 3
An elliptic boundary value problem of partial differential equation:



“Ugy — Uyy — Uzz + Rux = g(xvyvz) )
u(z,y)|02 =0.0,

where the region is 2 = [0, 1] %[0, 1] %[0, 1], and R = 1.0 and 100.0. The right-
hand side vector b is set to the exact solution of u = e®¥*sin(7z) X sin(7y) x
sin(mz). We discretize the region by using a 7-point difference scheme on a
80 x 80 x 80 mesh. The size of matrix A is 512,000.

4.2 The results

Tables 1-3 show the execution time on each problem in the case of no auto-
tuning, auto-tuning, and using PETSc[4]. In addition, they show auto-tuned
parameters in the auto-tuning case.

The calculation time of the QR decomposition in the lines 14-23 of Figure
1 was less than 1 second on every problem. Even though each PE contains the
QR decomposition, this overhead time was very small and it can be ignored.

Following parameters were set as the sample of the no auto-tuning case. These
are common parameters which were used comparison with the no auto-tuning
case and the auto-tuning case.

Matrix storage format : Compressed row storage format for unrolling.

Unrolling : Non-prefetch and no unrolling code.
Communication : Use MPI_Allgather funuction from the MPI library.
Restarting frequency : 30 (fixed)

Orthogonalization : Iterative refinement Gram-Schmidst.
Preconditioning : None.

In case of the auto-tuning version the leftmost explanation has the following
meaning.

iter. :Iteration count.

time : Total execution time including auto-tuning. (sec)

unro. : Unrolling type. For example, P(2,3) means prefetch code,

two outer loops expanded, and three inner loops expanded.
On the other hand, N(2,3) means non-prefetch code.
com. : Communication type.
Send - - - use MPI_Send and MPI_Recv in pairs.
Isend - -- use MPI_Isend and MPI_Irecv in pairs.
Irecv - - - use MPI_Irecv and MPI_Isend in pairs.
orth. : Orthogonalization type.
prec. : Preconditioning type.
I + B --- polynomial preconditioning.
BILU - - - block incomplete LU decomposition.

The matrix storage format in Tables 1-3 has been omitted since the com-
pressed row storage format for unrolling is selected in all problems.

As for PETSc, we used it with almost default parameter values. For example,
the restarting frequency is 30, the technique for orthogonalization is the iterative
refinement Gram-Schmidt method and so on. Only the convergence is decided
to be set 10712 in order to compare with our library.



Table 1. The results for problem 1

(a) R=1.0  SR2201 (b) R=1.5  SR2201
PE | 8] 16]  32[ 64] 128 PE | 8 16|  32]  64] 128
No auto-tuning No auto-tuning
iter. 43 43 43 43 43 iter. 93 93 93 93 93
time| 49.6| 36.7| 25.0/ 20.9| 22.0 time| 101.2| 85.5| 56.7| 45.7| 44.3
Auto-tuning Auto-tuning
iter. 18 19 19 19 20 iter. 50 93 93 93 93
time| 40.5| 24.0| 14.3 8.3 5.3 time.| 72.5| 29.1| 16.6 9.2 5.7
unro.|N(1,3)|N(1,3)|N(3,3)|N(3,3)|P(3,3) wunro.|N(1,3)|N(1,3)|N(3,3)|N(3,3)|N(3,3)
com.| Send| Send| Irecv| Irecv| Send com.| Send| Send| Irecv| Send| Send
orth.| MGS| MGS| CGS| CGS| CGS orth.] MGS| MGS| CGS| CGS| CGS
prec.| BILU| BILU| BILU| BILU| BILU prec.| BILU| None| None| None| None
PETSc PETSc
iter. 20 20 21 21 21 iter. 55 56 57 58
time| 93.1| 45.9| 24.5| 11.9 6.0 time fail.| 148.0| 75.5| 38.2| 19.7

(c) R=20  SR2201 (d) R=1.0  SR8000
PE | 8] 16] 32[ 64] 128 IP | 8] 16] 32| 64] 128
No auto-tuning No auto-tuning
iter. 337 323| 323] 323| 323 iter. 43 43 43 43 43
time | 353.3| 277.6| 186.9| 153.9| 143.9 time| 25.3| 19.0| 20.4| 20.0| 25.1
Auto-tuning Auto-tuning
iter. 332 321 321 321 321  iter. 18 19 19 19 20
time| 124.9| 86.6| 45.0 22.8| 13.7 time| 23.8] 12.9 7.6 5.9 5.1
unro.|N(1,3)|N(1,3)|N(3,3)|N(3,3)|P(3,3) unro.|N(1,3)|P(2,3)|N(1,3)|N(1,3)|N(1,3)
com.| Send| Send| Send| Send| Send com.| Send| Send| Send| Send| Irecv
orth.| MGS| MGS| CGS| CGS| CGS orth.| MGS| MGS| CGS| CGS| CGS
prec.| None| None| None| None| None prec.| BILU| BILU| BILU| BILU| BILU
PETSc
iter.
time| fail.| fail.| fail.| fail.| fail.

(e) R=1.5 SR8000 (c) R=2.0 SR8000
IP | 8] 16] 32| 64] 128 IP | 8]  16]  32] 64] 128
No auto-tuning No auto-tuning
iter. 93 93 93 93 93 iter. 323| 323| 323] 323] 323
time| 53.7| 40.0{ 43.1| 41.8| 52.8 time| 180.3| 134.8| 145.8| 141.4| 178.8
Auto-tuning Auto-tuning
iter. 50 93 93 93 93 iter. 321 321 321 321 321
time| 38.7| 11.9 7.1 5.7 5.7 time| 52.2| 27.3| 14.6 9.6 9.2
unro.|N(2,3)|P(2,3)|N(1,3)[N(1,3)|N(2,3) wunro.|N(2,3)|N(2,3)|N(2,3)|N(1,3)|N(1,3)
com.| Irecv| Send| Send| Send| Send com.| Irecv| Irecv| Send| Send| Irecv
orth.| MGS| CGS| CGS| CGS| CGS orth.] MGS| CGS| CGS| CGS| CGS
prec.| BILU| None| None| None| None prec.| None| None| None| None| None




Table 2. The results for problem 2

(f) R=1.0 SR2201 (a) R=1.0 SR.8000
PE | 8] 16] 32[ 64 128 TP | 8] 16] 32 64] 128
No auto-tuning No auto-tuning
iter. | 21842 21842| 21842| 21842| 21842 iter. | 21842 21842 21842| 21842| 21842
time [1205.7| 769.3| 540.9| 520.3| 413.1  time| 499.7| 332.5| 278.3| 225.8
Auto-tuning Auto-tuning
iter. | 1349| 1328 1429| 1596| 1497 iter.| 1349| 1328| 1429| 1596| 1497
time| 90.7| 44.3| 24.3| 14.1 7.9 time| 45.8/ 23.6| 12.3 7.6 4.5
unro.|P(3,5)|P(3,5)|P(2,5)|P(2,5)|P(2,5) wunro.|P(1,5)|P(1,5)|P(1,5)|P(2,5)|N(1,5)
com.| Send| Send| Send| Send| Send com.| Send| Send| Send| Send| Send
orth.| CGS| CGS| CGS| CGS| CGS orth.| CGS| CGS| CGS| CGS| CGS
prec.| BILU| BILU| BILU| BILU| BILU  prec.| BILU| BILU| BILU| BILU| BILU
PETSc
iter. | 2614| 2049| 2913| 3213| 3934
time| 576.0| 219.3| 153.7| 81.0| 57.0
Table 3. The results for problem 3
(a) R=1.0 SR2201 (b) R=100.0 SR2201
PE | 8] 16| 32 64] 128 PE | 8] 16] 32 64] 128
No auto-tuning No auto-tuning
iter. | 1265 1265 1265| 1265| 1265 iter. 626 626 626 626 626
time | 250.6 149.4| 98.9] 90.8| 80.9 time| 124.2| 72.1] 50.9| 44.7| 39.3
Auto-tuning Auto-tuning
iter. 288\ 300| 417 417 417  iter. 176| 199 207 306 272
time| 81.9| 42.5] 12.5 7.3 4.7 time| 45.7 25.3| 13.3| 11.3 4.3
unro.|P(2,7)|P(2,7)|P(1,7)|P(1,7)|P(1,7)  unro.|P(2,7)|P(1,7)|P(2,7)|P(1,7)|P(1,7)
com.| Isend| Isend| Isend| Isend| Isend com.| Isend| Isend| Isend| Irecv| Isend
orth.| MGS| CGS| CGS| CGS| CGS orth.| MGS| CGS| CGS| CGS| CGS
prec.| BILU| BILU| I + B|{I+ B|I + B prec.| BILU| BILU| BILU| BILU| BILU
PETSc PETSc
iter. 236 254 343 465 538 iter. 203 262 331 310 370
time | 182.2| 96.9| 67.0| 44.2| 25.2 time| 156.8| 100.6| 65.6| 29.7| 17.1
(c¢) R=1.0 SR8801 (d) R=100.0 SR8801
IP | 8] 16] 32[ 64 128 IP | 8] 16] 32[ 64] 128
No auto-tuning No auto-tuning
iter. | 1265| 1265 1265 1265| 1265  iter. 598| 598| 598 598 598
time| 111.4| 66.4| 42.0| 31.5 time| 53.1| 31.6] 20.0{ 15.0
Auto-tuning Auto-tuning
iter. 288\ 300| 417 417 417  iter. 176| 199 207| 306 272
time | 43.9] 23.5 6.8 4.8 4.4  time| 24.7| 14.0 7.8 7.1 3.8
unro.|P(1,7)(P(1,7)|P(1,7)|P(1,7)|P(1,7)  unro.|P(1,7)|P(1,7)|P(1,7)|P(1,7)|P(1,7)
com.| Irecv| Isend| Isend| Irecv| Irecv  com.| Irecv| Irecv| Isend| Irecv| Irecv
orth.| CGS| CGS| CGS| CGS| CGS orth.| CGS| CGS| CGS| CGS| CGS
prec.| BILU| BILU| I + B| I+ B| I+ B prec.| BILU| BILU| BILU| BILU| BILU




Comparison with no auto-tuning and auto-tuning If the problem size
is large, the execution time of auto-tuning is relatively smaller as compared to
the total execution time. Tables 1-3 show that auto-tuning method works very
well.

Unrolling type In problem 1, non-prefetch code is selected as the unrolling
type. In the other problems, prefetch code is selected. In problem 1, our library
often selects the code of 3-unrolled outer loop and 3-unrolled inner loop be-
cause loop size is small. In problem 3, it often selects no expanded code for the
outer loop. These results mean that auto-tuning behavior depends on machine
architectures and compilers.

Communication type Since the nonzero elements of a coefficient matrix
A was located at near diagonal intensively in all problems, the communication
table usage was selected. In the problems 1 and 2, since communication data
size was small, the method using MPI_Send and MPI_Recv in pairs was selected
so often. In the problem 3, since communication data size was large, the method
using MPI_Isend and MPI_ Irecv in pairs was selected.

Orthogonalization type If the number of PEs became large, the selected
method was changed from the MGS into the CGS. However the number of PEs
where the changes happen is different in each problem. For example it changed
into the CGS for 32 PEs in problem 1, for 8 PEs in problem 2, and for 16 PEs
in problem 3.

Preconditioning type In many cases, BILU was selected as preconditioner.
Table 3 shows that I 4+ B is included in the selected method. Because when the
number of PEs is large, preconditioning effect of using BILU is small. On the
other hand, preconditioning with I + B is invariable and it has nothing to do
with the change of the number of PEs.

Comparison to the PETSc In the Tables 1 (b) and 1 (c), the PETSc
failed to converge. In this case, users have to set parameters suitably. On the
whole, our library is approximately four times as fast as the PETSc library.

Scalability The execution time is reduced with the number of PEs. Speed-
ups for some problems are shown in Figure 7.

5 Conclusion

Selecting optimal codes to get high performance is very important. It brings
not only effective utilization of computer resource but also highly user friendly
library.

How we can get high performance without setting parameters in detail will
be the center of public interest.

Our library is open source and available on-line from out project home page
at http://www.hints.org/. Evaluation on the other parallel machines are part of
the future work.
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Fig. 7. Speed-ups in all problems
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