A Methodology for Automatically Tuned
Parallel Tridiagonalization on Distributed
Memory Vector-Parallel Machines

Takahiro Katagiri'? *, Hisayasu Kuroda'!, and Yasumasa Kanada?

! Department of Information Science, Graduate School of Science,
The University of Tokyo
2 Research Fellow of the Japan Society for the Promotion of Science
3 Computer Centre Division, Information Technology Center,

The University of Tokyo

2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8658, JAPAN

Phone: +81-3-5841-2736, FAX: 481-3-3814-2731
{katagiri, kuroda, kanada}@pi.cc.u-tokyo.ac.jp

Abstract. In this paper, we describe an auto-tuning methodology for
the parallel tridiagonalization to attain high performance. By searching
the optimal set of three parameters for the performance, a highly efficient
routine can be obtained automatically. Evaluation of the methodology
on the distributed memory parallel machines, the HITACHI SR2201 and
HITACHI SR8000, has been provided. The experimental results show
1.3-1.8 times speed-up to a not auto-tuned routine which was specified
with reasonable parameters, and the ratios increased for growing problem
sizes. Comparison between the execution time of our routine with that
of the ScaLAPACK’s routine shows that our auto-tuned routine is faster

in many cases.

1 Introduction

Tuning computational kernels is time-consuming work. We still have to use sev-
eral techniques to attain high performance. To avoid the tuning work, many
linear algebra programs are constructing by using vendor-tuned BLAS (Basic
Linear Algebra Subprograms) routines. The BLAS routines give us high effi-
ciency if the BLAS routines were implemented optimally. However, if the BLAS
routines were implemented with low efficiency, the performance will be poor.
Solution for such implementation problem for BLAS is to use auto-tuning soft-
ware for BLAS, such as PHiPAC [1] or ATLAS [11]. We call these software as
auto-tuning software for gemeral usage.

On the other hand, tuning software automatically that does not or can not
use BLAS is hard. Accordingly, every piece of software that can be tuned au-
tomatically has a special auto-tuning facility. For example, FEFTW [4] for the

* Candidate to the Best Student Paper Award

discrete Fourier transformation, and the auto-tuning libraries [9] for sparse lin-
ear equation solvers. We call these software packages as auto-tuning software
for dedicated usage. This paper includes that the report of the development of
such auto-tuning software for dedicated usage. The reasons for this report are
as follows:

1. Presently, auto-tuning software for parallel processing is not available.
2. We believe that an auto-tuning facility should be contained in each package.

As for reason 2, if the auto-tuning facility is separated from the package, users
will be in trouble to attain high performance, because they have to install auto-
tuning software into their environments separately. In addition, the time needed
for auto-tuning may be enormous because it may tune even non-relevant sub-
routines (consider the tuning time of all BLAS subroutines.) Hence, our routine
contains this auto-tuning facility.

This paper is organized as follows. Description of our parallel dense eigen-
solver in Section 2. Section 3 is about the parameters of auto-tuning, and how
to search for the optimal parameters. In Section 4, we show the results of the
auto-tuned parameters and execution time of our routines using the auto-tuning
methodology on the HITACHI SR2201 and HITACHI SR8000. The result of the
SR2201 includes a comparison with the ScaLAPACK routine. Finally, Section 5
gives the conclusion of this paper.

2 Dense symmetric eigensolver

2.1 Entire process
Our eigensolver can perform the following eigendecomposition:
A=XAX1, (1)

where A € R™*" is a symmetric dense matrix, A € IR**" is a diagonal matrix
which contains eigenvalues \; € IR, i = 1,2,...,n as the i-th diagonal elements,
and X € IR™" is a matrix which contains eigenvectors z; € IR" as the i-th
row vectors, where n is problem size. In our eigensolver, the decomposition (1)
is performed by using a well-known method, the Householder-bisection method.
To perform the Householder-bisection method, the following four processes are
needed.

1. Tridiagonalization by the Householder method: 7' = QAQ.

2. Eigenvalues of the tridiagonal matrix 7" are calculated by using the bisection
method.

3. By using the inverse-iteration method, eigenvectors of the tridiagonal matrix
T are calculated.
(The processes 2 and 3 yield the eigendecomposition T = Y AY 1))

4. Reconstructing eigenvalues for the matrix A : X = QY.

Concerning the above four processes, the processes 1 and 4 can affect the whole
performance if we need no orthogonalization in process 3. Process 4 depends on
the data distribution of the matrices @ and Y [5]. For this reason, determining
the optimal parallelization of process 4 is hard, and hence, the parallelization has
not been treated in this paper. Next section describes how to parallelize process
1.

2.2 Householder tridiagonalization

Consider the following transformation: A = A to tridiagonal form A("=2),
where A is defined as the k-th iteration of the matrix A. This transformation
is denoted by H®) (z) = H®*) (A(k)), Where A() .k 18 @ row vector of A which is
constructed by the k-th row and from the k- th to the n-th columns in the k-th
iteration. By substituting H*) = I — auu” for H*) (z) in the k + 1-th iteration,
the following equations are derived:

AR — g (k) 4) ()

=A® — 0 A® T — auu A® + a2uut ARy T

AR g T — uy + awu® zu”
AR — uy + uuu —zu”
A(k) —u(y" — pu") — zu”, (2)
where
r=aAd®u, yT=au"A®, p=au"z. (3)

Here a,pr € R, and u,z,y € IR”. As matrix A is symmetric, 2 = y7, and we
obtain the following formula:

AR+ — g(k) _ u(xT — uuT) —zul. (4)

Note that to execute the k-th iteration, the column vector Ay., ; from the partial
matrix Ag:n k:n is needed.

2.3 Parallel implementation of the Householder tridiagonalization

Let p be the number of processor elements (PEs). The objective matrix A is
distributed by r x ¢ 2-D grid distribution, called grid-wise distribution (Cyclic,
Cyclic), where r x ¢ = p. The grid-wise distribution (Cyclic, Cyclic) distributes
the elements of A to the following PEs:

ij — P(z mod r, j mod q)» (5)

where the Pdz idy), (idz = 0,1,..,7 =1, idy = 0,1,...,¢ — 1) means the PE
identification number on the 2-D grid distribution. We do not support block-
cyclic distribution because the block-cyclic distribution causes poor load balance
when n/p is small.

B Prvvide maidy oWns row set 17 and g7> l_f}'](elnha.ve diagonal elements of A)
c column set I" of n x n matrix A. -
(1) do k=1, n -2 (18) broadcast(z) to
go = n & PEs sharing columns I’
(2) if (k€ l') then (19) else
(3) broadcast(AS;c?,?) to (20) receive(zr)
<<§Z> | PEs sharing rows I7 (21) endif
e’se .) C computation of u = auTz
G ent @) o=k
enci (23) w=augzg enddo
(7) computation of (um,a) (24) global slljlmmation of u to
g) {(I have diagonal elements of A) & PEs sharing rows 7
then c computation of
(9) broadca.st(un).to c ACHD = AW (2T — Ty — 2T
<<§510> | PEs sharing columns [’ (25) do j=k, n
else (26) do i=k, n
g;; rf;Cffflve(UF) 27y if (i€ IT .and. j€ I') then
endi (k+1) _
c computation of z = oA (28) upc(lle:.)te Aii T_ T T
(13) do j=k, n & A7 =i (G =) = xi v
14y i (jE) 2m =21 + o A (29) endif enddo enddo
& endif L c remove k from active columns
i d rows
(15) enddo ¢ e .
TR . (30) if(kel) I'=1 —{k} endif
16 lobal summation of 7 to PEs s BT
<<§L)8 sharing rows I 8 (31) if (k € IT) Il = IT — {k} endif
(32) enddo

Fig. 1. Parallel algorithm for the tridiagonalization (the (Cyclic, Cyclic) grid-wise dis-
tribution).

We already developed the parallel tridiagonalization and Hessenberg reduc-
tion routines [8] by the Householder transformation. Figure 1 shows our parallel
tridiagonalization algorithm. The routine of Figure 1 reduces communication and
broadcast times for vector reduction to a ratio of 1/,/p. The same idea appears
in [3,6,5]. Symmetry of the matrix A was not used in the algorithm of Figure
1, and hence, the algorithm has the computational complexity of 8n?/3, while
the algorithm using symmetry has 4n®/3. This is because, the algorithm based
on the symmetry causes complex data accesses, and the complex data accesses
prevent easy parallel implementation.

Figure 1 gives a conclusion that implementations of the following three op-
erations affect the total performance.

1. The global summations of the lines (7), (16), and (24).
2. The matrix-vector product of the lines (13)—(15).
3. The process to update the matrix A of the lines (25)—(29).

These three operations are the basic operations for parallel tridiagonalization,
and the system will tune the three basic operations automatically in our auto-
tuning process.

3 Method for searching parameters

In this section, the method of tuning the three basic operations automatically is
described. Hereafter, we use MPI (Message Passing Interface) as the communi-
cation library.

3.1 Parameter for the global summations

To perform the global summations, the following two implementations were se-
lected.

1. A routine based on the binary tree-structured communication, or
2. The MPI_ALLREDUCE function on MPI.

It depends on the implementation of MPI functions which implementation has
the higher performance. Hence, measuring their real performance is necessary to
select the best implementation. For that reason, our auto-tuning routine has a
parameter for the above two implementations.

3.2 Parameter for the matrix-vector product

To perform the parallel matrix-vector product (z = aA®™u) at high perfor-
mance, the size of the stride for loop unrolling must be selected. The size of the
stride depends on the machine architectures, operating systems, and compilers
we use. Therefore, selecting the optimal number of stride without measuring its
real execution time is hard.

For example, a three-stride unrolled routine on the matrix-vector product
are shown, where the value of ilocal_length_x can be divided by 3 to simplify
the explanation.

m = ilocal_length_x/3

j=1

do k=1, m
dtl = 0.0d0
dt2 = 0.0d0
dt3 = 0.0d0

do i=1, ilocal_length_y
du_y = u_y(i)
ix = init_x+i
iy = init_y+j

dtl = dtl + A(ix, iy) * du_y
dt2 = dt2 + A(ix, iy+1) * du_y
dt3 = dt3 + A(ix, iy+2) * du_y

enddo

x k(j) =dtl *x al

x_k(j+1) = dt2 * al

x_k(j+2) = dt3 * al

j=3+3
enddo

This example shows a case of the loop unrolling for the outer-loop k only. We
can unroll the inner-loop i or both of the loops k and i. Current target ma-
chines are vector architecture machines as explained in the Section 4. Then, we
only unrolled the outer-loop, since unrolling the inner-loop shortens the loop
length which is not good for vector architecture machines. For the auto-tuning
parameter, we take the size of the stride.

3.3 Parameter for the process to update

As in the case of the matrix-vector product, it is necessary to set the size of the
stride for unrolling in the process to update (A*+1 = A®) —y (2T —pu”) —zu’).
For example, a two-stride unrolled routine on the process to update is shown,
where the value of ilocal_length_x also can be divided by 2 to simplify the
explanation.

m = ilocal_length_x/2
do k=1, m

j = 2% (k-1)+1

dtul = u_x(j)

dtu2 = u_x(j+1)
dtrl = mu * dtul - x_k(j)
dtr2 = mu * dtu2 - x_k(j+1)
do i=1, ilocal_length_y
du_y = u_y(i)
dx_k = x_k(i)
ix = init_x+i

iy = init_y+j
A(ix, iy) = A(ix, iy) + du_y * dtrl - dx_k * dtul
A(ix, iy+1) = A(ix, iy+1) + du_y * dtr2 - dx_k * dtu2
enddo
enddo

For the same reason as for the matrix-vector product, we only unroll the outer
loop k. The auto-tuning parameter for the process to update is the stride for
unrolling.

3.4 How to search these parameters

Let the parameters for the global summation, the matrix-vector product, and
the process to update be denoted as Comm. Type, Mat-Vec, and Updating, respec-
tively. The Comm.Type can take on the values { Tree, MPI_ALLREDUCE }, where
Tree means a routine based on binary tree-structured communication, and the
MPI_ALLREDUCE means communication by a MPI function. The Mat-Vec can
have the values { None, 2, 3, 4, 5, 6, 8, 16 }, where the numbers show the size

of the stride for unrolling. The Updating can be chosen as { None, 2, 3, 4, 5, 6,
8, 16 } like in the Mat-Vec case.

Following is the description of how to search for optimal parameters. We first
set the following default parameter values:

Comm.Type = Tree, Mat-Vec = 8, Updating = 6. (6)

Secondly, we searched the optimal parameters by using the above initial
parameters. Method for varying the parameters is as follows.

1. Comm.Type=Tree, Mat-Vec=8, and Updating is varied as { None, 2,
3,4,5,6,8, 16 }.

2. Comm.Type=Tree, Mat-Vec is varied as { None, 2, 3, 4, 5, 6, 8, 16 },
and Updating={ the selected value from the process 1 }

3. Comm.Type is varied as { Tree, MPI_ALLREDUCE }, Mat-Vec={ the
selected value from the process 2 }, and Updating={ the selected
value from the process 1 }.

This method can not find optimal parameters if there is a dependency among
the three parameters. However, the basic operations we mentioned are separated
physically (see Figure 1), hence, there is no dependency in the three parameters.
Therefore, we may be confident that our method can find an almost optimal set
of parameters.

As for the problem sizes, n = 100 is specified as the initial values. The
problem size is increased by using the stride of 100 while problem size n is under
1000, the stride of 1000 while 1000 < n < 10000, and the stride of 10000 while
n is over 10000. This increment is used in each searching process.

4 Experimental results

We implemented the auto-tuning methodology on the HITACHI SR2201 and
HITACHI SR&000.

The HITACHI SR2201 system is a distributed memory, message-passing par-
allel machine of the MIMD class. It is composed of 1024 PEs, each having 256
Megabytes of main memory, interconnected via a communication network hav-
ing the topology of a three-dimensional hyper-crossbar. The peak interprocessor
communications bandwidth is 300 Mbytes/s in each direction. We used the HI-
TACHI Optimized Fortran90 V02-06-/D compiler, and the compile option we
used was -rdma -W0,"OPT(0O(SS))’.

The HITACHI SR8000 system is a distributed memory, message-passing par-
allel machine of the MIMD class like the HITACHI SR2201. It is composed of
128 nodes, each having 8 Instruction Processors (IPs), 8 Gigabytes of main
memory, interconnected via a communication network having the topology of
a three-dimensional hyper-crossbar. The peak interprocessor communications
bandwidth is 1 Gbytes/s in each direction. The SR8000 system has two types

of parallel environments, named inner-node parallel processing and inter-node
parallel processing. The inner-node parallel processing is so-called parallel pro-
cessing in a sheard memory parallel machine, and there is no interprocessor com-
munication. On the other hand, the inter-node parallel processing is like parallel
processing as a distributed memory parallel machine, and it can perform inter-
processor communications. We used the HITACHI Optimized Fortran90 V01-00
compiler, and compile option we used was -W0,’"OPT(0(SS)),mp(p(0)) in the
inner-node parallel processing, and -W0,’"OPT(0(SS)),mp(p(4))’ in the inter-
node parallel processing.

The communication library used for the SR2201 and SR8000 was MPI. Both
machines have vector PEs in a sense, i.e. the Pseudo Vector Processor [2]. There-
fore, we can regard both machines as vector-parallel machines.

We implemented our tridiagonalization routine by using dedicated subrou-
tines which satisfy functions for the three parameters. For instance, our routine
contains a two-stride unrolled matrix-vector product subroutine, or a three-stride
unrolled subroutine to update, and so on. By using such subroutines, we can spec-
ify the arbitrary parameters. Note that our software does not generate Fortran
codes dynamically in this experiments. All auto-tuning was done at run time.

4.1 The results of the SR2201

Results of auto-tuning Table 1 shows parameters auto-tuned on the SR2201.
The tuning time depended on the number of PEs, and the CPU elapsed time

Table 1. The auto-tuned parameters on the SR2201.

(a) Case of 4 PEs (b) Case of 32 PEs
Size Comm.Type Mat-Vec Updating Size Comm.Type Mat-Vec Updating
100 MPI_ALLREDUCE 6 3 100 MPI_ALLREDUCE 6 16
200 Tree 8 4 200 MPI_ALLREDUCE 4 5
300 Tree 8 6 300 MPI_ALLREDUCE 4 4
400 Tree 5 2 400 MPI_ALLREDUCE 6 3
500 Tree 8 5 500 MPI_ALLREDUCE 6 4
600 Tree 5 6 600 MPI_ALLREDUCE 6 4
700 Tree 8 6 700 MPI_ALLREDUCE 8 3
800 Tree 3 3 800 MPI_ALLREDUCE 5 3
900 Tree 8 4 900 MPI_ALLREDUCE 4 3
1000 Tree 5 5 1000 MPI_ALLREDUCE 5 3
2000 Tree 5 6 2000 MPI_ALLREDUCE 5 5
3000 Tree 5 5 3000 MPI_ALLREDUCE 8 5
4000 Tree 3 3 4000 MPI_ALLREDUCE 5 5
5000 MPI_ALLREDUCE 5 5 5000 MPI_ALLREDUCE 8 5
6000 MPI_ALLREDUCE 5 5 6000 MPI_ALLREDUCE 5 5
7000 MPI_ALLREDUCE 5 5 7000 MPI_ALLREDUCE 5 5
8000 MPI_ALLREDUCE 3 2 8000 MPI_ALLREDUCE 3 3
Tuning time 118401 (32.8 Tuning time 15555 (4.3

[Sec.] [Hours]) [Sec.] [Hours])

was about 32 hours at most. The tendency of the tuned parameter of Comm. Type
were different between 4 and 32 PEs, and the tuned parameters of Mat-Vec and
Updating was different on every problem size. From these facts, we expected
that the routine is effective in speeding up.

Comparison to ScaLAPACK To evaluate execution time of the tridiagonal-
ization routine (hereafter TRD), we used the HITACHI optimized ScaLAPACK
version 1.2 [7]. Its communication library used was PVM, and PBLAS (Paral-
lel BLAS) which is the computational kernel for ScaLAPACK and is optimized
by HITACHTI limited. ScaLAPACK’s tridiagonalization routine (hereafter SLP
TRD) is implemented by using block-cyclic distribution, a blocked algorithm,
and symmetry of the matrix [10]. Because of using a blocked algorithm, the size
of blocking (BL) can greatly affect the performance of ScaLAPACK. According
to [7], if the problem size n is less than 4000, the desirable BL is 60, and if n
is over 4000, the desirable BL is 100 on the SR2201. Considering these recom-
mended values, we evaluated the performance of the SLP TRD routines with
BL = {40,60,80,100,120} to find which BL gives the best performance. In
[7] it is shown that /p x /p is the best layout for the PE grid. We measured
execution time in the PE grid for a large number of PEs. When the number of
PEs is small, such as 4, 32, and 64, we measured time in all combinations for
the PE grid to find which PE grid gives the best performance.

Table 2 shows execution time of the TRD1 (not auto-tuned), TRD2 (auto-
tuned), and SLP TRD. Reasonable parameters of Comm.Type = Tree, Mat-Vec
= 8, and Updating = 6 are specified in the TRD1 (not auto-tuned). Note that
the optimal BL size and PE grids for the SLP TRD are used, and the values are
included in Table 2.

Table 2. Execution time on the SR2201. Unit is in second.

(a) Case of 4 PEs (b) Case of 32 PEs

Size SLP TRD TRD1 TRD2 TRD1 Size SLP TRD TRD1 TRD2 TRD1
(Grid,BL) (not AT) (AT) /TRD2 (Grid,BL) (not AT) (AT) /TRD2

100 0.02 0.056 0.056 1.00 100 0.09 0.108 0.106 1.01
(1x4,100) (2x2) (2x2) (4x8,100) (4x8) (4x8)

200 0.48 0.131 0.133 0.98 200 0.87 0.250 0.240 1.04
(1x4,100) (2x2) (2x2) (2x16, 100) (4x8) (4x8)

400 1.73 0.435 0.475 0.91 400 2.33 0.514 0.516 0.99
(1x4, 40) (2x2) (2x2) (2x16, 60) (4x8) (4x8)

800 6.01 3.732 2.454 1.5 800 6.27 1.207 1.228 0.98
(1x4, 40) (2x2) (2x2) (2x16, 60) (4x8) (4x8)

1000 9.32 3.817 3.785 1.0 1000 8.28 1.654 1.687 0.98
(2x2, 40) (2x2) (2x2) (2x16, 60) (4x8) (4x8)

2000 41.90 28.165 26.937 1.0 2000 22.18 5.930 5.886 1.00
(2x2, 40) (2x2) (2x2) (48, 40) (4x8) (4x8)

4000 231.10 411.666 242.010 1.7 4000 72.74 32,961 32.124 1.02
(2x2, 40) (2x2) (2x2) (48, 40) (4x8) (4x8)

8000 1422.69 3589.175 1962.512 1.8 8000 313.25 427.267 254.937 1.6
(2x2,100) (2x2) (2x2) (4x8, 40) (4x8) (4x8)

Table 2 shows that we obtained 1.6-1.8 times speed-ups with respect to the
TRD1 (not auto-tuned) when problem sizes were large, such as 4000, 8000. As
for the SLP TRD execution time, we find that when problem size is small, the
TRD was faster than the SLP TRD. On the other hand, when problem sizes per
PE were large, the SLP TRD was faster than the TRD. We consider that this
is explained from the computational complexity of the TRD, since the TRD has
twice computational complexity to the SLP TRD.

Figure 2 shows the execution time of the TRD1 (not auto-tuned), TRD2
(auto-tuned), and SLP TRD in n = 2000 and 8000 cases. Note that the execution
time of the SLP TRD in Figure 2 was specified the optimal BL and the PE grid.
From Figure 2, we can conclude that when n = 2000, the TRD is always faster

50["h=2000 ¥ 10000 o000
45 [SRZ2QY [5 SnF;2201
40 [~ TRD1
8 o t auto-tuned
° 35 - Seal APACK 4 <. (not auto-tuned)
8 e S 1000
8§ ol S
2 o5 b ScalAPACK
£ 25 [F o 3 P
Ko guenersberes X N N O
g 20 i e S
"5 £ 100 w.’h\’ﬁ/‘
10 M TRDI1 (not auto-tuned) H TED2
5 h TRD2 (alito-tuned) (auto-tuned)
‘
074 100 200 300 400 500512 10, 10 100 10001024
Number of PEs Number of PEs
(a) Case of n = 2000 (b) Case of n = 8000

Fig. 2. Execution time for the SLP TRD and TRD in the tridiagonalization (SR2201).

than the SLP TRD, and the speed-up ratios are about 2-6 times. On the other
hand, when n = 8000, the execution speed of the TRD was slower than the SLP
TRD when the number of PEs was under 64, however, when over 64, the TRDs
became faster than the SLP TRD. The effect of auto-tuning was high when the
number of PEs was under 64.

From the experimental results, we conclude that our methodology is useful,
especially, when the problem sizes are large. In addition, the TRD is fast when
the problem sizes are small on the SR2201.

The execution time in every auto-tuning process To evaluate the auto-
tuning process in detail, we analyzed the execution time in each of our auto-
tuning process. Figure 3 shows the time when the problem size was 8000.

From Figure 3 (a), we see that the specified initial parameters (Comm.Type
= Tree, Mat-Vec = 8, Updating = 6) were worse than the case of Figure 3 (b),
because the 6-stride of the process 1 (Updating) and the 8-stride of the process
2 (Mat-Vec) in Figure 3 (a) were not optimal parameters, and the change of
the elapsed time when varying these strides was high. Hence, we conclude that
the initial parameters were not good for the case of 4 PEs, and this caused

7000
6500f SR2201 300 5532201
gooof ' / p=64 The pfocess 1
The process 1 ” (Updating)
§ 5500 (Updating) S250
§ 5000 8
Q Q
o 4500 a
S £
‘g 4000 1 initial ; GE)ZOO
E 3500 _,) iniial parameters = The process 3
. (Comm.Type) L The process 2
3000 The process 3 . 150 Ve initial (Mat-Vec)
25001 (Comm.‘!’xgg).f The process 2 ¢,_* :’f) parameters
2000 e (Mat-Vec) === IR
/05 4y 5 8 10 12 14 16 90 1 > 4 § g 10 12 14 16
(Tree) (MPI_ALLREDUCE) (Tree) (MPI_ALLREDUCE)
The stride of unrolling The stride of unrolling
(a) Case of p=4 (b) Case of p = 64

Fig. 3. The execution time in every auto-tuning process. (SR2201, n = 8000)

high speed-up ratios. On the other hand, Figure 3 (b) shows that the initial
parameters we specified were almost optimal values. For this reason, we conclude
that we did not obtain better speed-ups on 64 PEs than the speed-ups on 4PEs
on the SR2201.

4.2 The results of SR8000

Results of auto-tuning and execution time Table 3 shows auto-tuned pa-
rameters on the SR8000. From Table 3, the tendency of tuned parameters was
found to be different between the inner-node parallel and inter-node parallel
environments. From this fact, we could also find the cases for the speed up.
Table 4 shows execution time of the TRD1 (not auto-tuned) and TRD2 (auto-
tuned). From Table 4, we obtained about 1.1-1.3 times speed-ups with respect
to the TRD1 (not auto-tuned). The effect became stronger when problem size
increased. So, the authors conclude that our auto-tuning methodology is also
useful on the SR8000.

5 Conclusion

The authors have implemented and evaluated a tridiagonalization routine by
using an auto-tuning methodology. Selecting suitable implementations for the
global summation, the matrix-vector product, and the process to update on
the parallel tridiagonalization is the auto-tuning methodology we mentioned in
this paper, and the methodology is quite simple. Even though we used this
quite simple methodology, we could obtain about 1.1-1.8 times speed-ups with
respect to the routine for which the reasonable parameters in the SR2201 and
the SR8000 were specified. From these results, the authors concluded that such
an auto-tuning methodology is an effective technique.

The auto-tuning methodology is for vector-parallel machines. The auto-tuning
methodology for the RISC based parallel machines, such as selecting blocking
factors in blocked algorithms, and evaluation on the RISC based parallel ma-
chines are parts of the future work.

Table 3. The auto-tuned parameters on the SR8000.

(a) Case of 1 Node (8 IPs) (b) Case of 4 Nodes (32 IPs)
(SR8000, inner-node parallel, (SR8000, inter-node parallel,
sheard memory) distributed memory)
Size Comm.Type Mat-Vec Updating Size Comm.Type Mat-Vec Updating
100 MPI_ALLREDUCE None None 100 Tree None 2
200 MPI_ALLREDUCE 4 None 200 Tree None None
300 MPI_ALLREDUCE 8 None 300 Tree None 2
400 MPI_ALLREDUCE 4 None 400 Tree None None
500 MPI_ALLREDUCE 5 None 500 Tree None None
600 MPI_ALLREDUCE 6 3 600 Tree None None
700 MPI_ALLREDUCE 6 None 700 Tree None None
800 MPI_ALLREDUCE 6 3 800 Tree 4 None
900 MPI_ALLREDUCE 6 None 900 Tree 4 None
1000 MPI_ALLREDUCE 6 3 1000 Tree 6 None
2000 MPI_ALLREDUCE 6 None 2000 MPI_ALLREDUCE 6 4
3000 MPI_ALLREDUCE 6 None 3000 MPI_ALLREDUCE 6 4
4000 MPI_ALLREDUCE 6 None 4000 MPI_ALLREDUCE 4 16
5000 MPI_ALLREDUCE 4 None 5000 MPI_ALLREDUCE 4 16
6000 MPI_ALLREDUCE 4 None 6000 MPI_ALLREDUCE 4 16
7000 MPI_ALLREDUCE 6 None 7000 MPI_ALLREDUCE 6 16
8000 MPI_ALLREDUCE 6 None 8000 MPI_ALLREDUCE 6 16
Tuning time 16325 (4.5 Tuning time 4443 (1.2
[Sec.] [Hours]) [Sec.] [Hours])

Table 4. Execution time on the SR8000. Unit is in second.

(a) Case of 1 Node (8 IPs) (b) Case of 4 Nodes (32 IPs)
(SRB000, inner-node parallel, (SR8000, inter-node parallel,
sheard memory) distributed memory)
size TRD1 TRD2 TRDI1 Size TRD1 TRD2 TRDI1
(not AT) (AT) /TRD2 (not AT) (AT) /TRD2
100 0.024 0.022 1.09 100 0.038 0.036 1.05
(2x4) (2x4) (2x2) (2x2)
200 0.053 0.049 1.08 200 0.077 0.072 1.06
(2x4) (2x4) (2x2) (2x2)
400 0.162 0.145 1.11 400 0.176 0.162 1.08
(2x4) (2x4) (2x2) (2x2)
800 0.678 0.587 1.15 800 0.490 0.450 1.08
(2x4) (2x4) (2x2) (2x2)
1000 1.155 0.988 1.16 1000 0.714 0.648 1.10
(2x4) (2x4) (2x2) (2x2)
2000 7.098 5.095 1.26 2000 2.806 2.345 1.19
(2x4) (2x4) (2x2) (2x2)
4000 50.451 39.263 1.28 4000 14.957 11.392 1.31
(2x4) (2x4) (2x2) (2x2)
8000 389.297 308.307 1.26 8000 102.369 75.398 1.35

(2x4) (2x4) (2x2) (2x2)

Acknowledgments

The authors are much obliged to Dr. Aad van der Steen at the Utrecht University
for giving us useful comments in this paper. This research is partly supported
by Grant-in-Aid for Scientific Research on Priority Areas “Discovery Science”
from the Ministry of Education, Science and Culture, Japan.

References

1.

10.

11.

J. Bilmes, K. Asanovi¢, C.-W. Chin, and J. Demmel. Optimizing Matrix Multiply
Using PHiPAC: A Portable, High-performance, ANSI C Coding Methodology. In
Proceedings of International Conference on Supercomputing 97 (Vienna, Austria,

1997) 340-347.

. T. Boku, K. Itakura, H. Nakamura, and K. Nakazawa. CP-PACS: A Massively

Parallel Processor for Large Scale Scientific Calculations. In Proceedings of Inter-
national Conference on Supercomputing 97 (Vienna, Austria, 1997) 108-115.

H. Chang, S. Utku, M. Sakama, and D. Rapp. A Parallel Householder Tridiago-
nalization Stratagem Using Scattered Square Decomposition. Parallel Computing
6 (1988) 297-311.

M. Frigo. A Fast Fourier Transform Compiler. In Proceedings of the 1999 ACM
SIGPLAN Conference on Programming Language Design and Implementation (At-
lanta, Georgia, 1999) 169-180.

B. Hendrickson, E. Jessup, and C. Smith. Toward an Efficient Parallel Eigensolver
for Dense Symmetric Matrices. SIAM J. Sci. Comput. 20(3) (1999) 1132-1154.
B. A. Hendrickson and D. E. Womble. The Tours-wrap Mapping for Dense Matrix
Calculation on Massively Parallel Computers. SIAM Sci. Comput. 15(5) (1994)
1201-1226.

HITACHI Ltd. Using ScaLAPACK and PBLAS Libraries for the HITACHI
SR2201. Computer Centre News, the University of Tokyo 30(2) (1998) 36-58.
in Japanese.

T. Katagiri and Y. Kanada. Performance Evaluation of Householder Method for
the Eigenvalue Problem on Distributed Memory Architecture Parallel Machine.
IPSJ SIG Notes 96-HPC-62 (1996) 111-116. in Japanese.

H. Kuroda and Y. Kanada. Performance of Automatically Tuned Parallel Sparse
Linear Equations Solver. IPSJ SIG Notes, 99-HPC-76 (1999) 13-18. in Japanese.
K. S. Stanley. Ezecution Time of Symmetric Eigensolver. Ph.D Thesis, The Uni-
versity of California at Berkeley, 1997.

R. C. Whaley and J. J. Dongarra. Automatically Tuned Linear Algebra Software,
ATLAS project, http://www.netlib.org/atlas/index.html.

