
A Methodology for Automatically Tuned

Parallel Tridiagonalization on Distributed

Memory Vector�Parallel Machines

Takahiro Katagiri�� �� Hisayasu Kuroda�� and Yasumasa Kanada�

� Department of Information Science� Graduate School of Science�
The University of Tokyo

� Research Fellow of the Japan Society for the Promotion of Science
� Computer Centre Division� Information Technology Center�

The University of Tokyo
������� Yayoi� Bunkyo�ku� Tokyo ������	�� JAPAN
Phone
 ������	�����
��� FAX
 ������������
��

fkatagiri� kuroda� kanadag�pi�cc�u�tokyo�ac�jp

Abstract� In this paper� we describe an auto�tuning methodology for
the parallel tridiagonalization to attain high performance� By searching
the optimal set of three parameters for the performance� a highly e�cient
routine can be obtained automatically� Evaluation of the methodology
on the distributed memory parallel machines� the HITACHI SR���� and
HITACHI SR����� has been provided� The experimental results show
������� times speed�up to a not auto�tuned routine which was speci�ed
with reasonable parameters� and the ratios increased for growing problem
sizes� Comparison between the execution time of our routine with that
of the ScaLAPACK�s routine shows that our auto�tuned routine is faster
in many cases�

� Introduction

Tuning computational kernels is time�consuming work� We still have to use sev�
eral techniques to attain high performance� To avoid the tuning work� many
linear algebra programs are constructing by using vendor�tuned BLAS �Basic
Linear Algebra Subprograms� routines� The BLAS routines give us high e��
ciency if the BLAS routines were implemented optimally� However� if the BLAS
routines were implemented with low e�ciency� the performance will be poor�
Solution for such implementation problem for BLAS is to use auto�tuning soft�
ware for BLAS� such as PHiPAC �	
 or ATLAS �		
� We call these software as
auto�tuning software for general usage�

On the other hand� tuning software automatically that does not or can not
use BLAS is hard� Accordingly� every piece of software that can be tuned au�
tomatically has a special auto�tuning facility� For example� FFTW ��
 for the

� Candidate to the Best Student Paper Award



discrete Fourier transformation� and the auto�tuning libraries ��
 for sparse lin�
ear equation solvers� We call these software packages as auto�tuning software
for dedicated usage� This paper includes that the report of the development of
such auto�tuning software for dedicated usage� The reasons for this report are
as follows


	� Presently� auto�tuning software for parallel processing is not available�
�� We believe that an auto�tuning facility should be contained in each package�

As for reason �� if the auto�tuning facility is separated from the package� users
will be in trouble to attain high performance� because they have to install auto�
tuning software into their environments separately� In addition� the time needed
for auto�tuning may be enormous because it may tune even non�relevant sub�
routines �consider the tuning time of all BLAS subroutines�� Hence� our routine
contains this auto�tuning facility�

This paper is organized as follows� Description of our parallel dense eigen�
solver in Section �� Section � is about the parameters of auto�tuning� and how
to search for the optimal parameters� In Section �� we show the results of the
auto�tuned parameters and execution time of our routines using the auto�tuning
methodology on the HITACHI SR���	 and HITACHI SR����� The result of the
SR���	 includes a comparison with the ScaLAPACK routine� Finally� Section �
gives the conclusion of this paper�

� Dense symmetric eigensolver

��� Entire process

Our eigensolver can perform the following eigendecomposition


A � X�X��� �	�

where A � IRn�n is a symmetric dense matrix� � � IRn�n is a diagonal matrix
which contains eigenvalues �i � IR� i � 	� �� ���� n as the i�th diagonal elements�
and X � IRn�n is a matrix which contains eigenvectors xi � IRn as the i�th
row vectors� where n is problem size� In our eigensolver� the decomposition �	�
is performed by using a well�known method� the Householder�bisection method�
To perform the Householder�bisection method� the following four processes are
needed�

	� Tridiagonalization by the Householder method
 T � QAQ�
�� Eigenvalues of the tridiagonal matrix T are calculated by using the bisection

method�
�� By using the inverse�iteration method� eigenvectors of the tridiagonal matrix

T are calculated�
�The processes � and � yield the eigendecomposition T � Y �Y ����

�� Reconstructing eigenvalues for the matrix A 
 X � QY �



Concerning the above four processes� the processes 	 and � can a�ect the whole
performance if we need no orthogonalization in process �� Process � depends on
the data distribution of the matrices Q and Y ��
� For this reason� determining
the optimal parallelization of process � is hard� and hence� the parallelization has
not been treated in this paper� Next section describes how to parallelize process
	�

��� Householder tridiagonalization

Consider the following transformation
 A��� � A to tridiagonal form A�n����
where A�k� is de�ned as the k�th iteration of the matrix A� This transformation
is denoted by H�k��x� � H�k��A

�k�
k�n�k�� where A

�k�
k�n�k is a row vector of A which is

constructed by the k�th row and from the k�th to the n�th columns in the k�th
iteration� By substituting H�k� � I��uuT for H�k��x� in the k�	�th iteration�
the following equations are derived


A�k��� � H�k�A�k�H�k�

� A�k� � �A�k�uuT � �uuTA�k� � ��uuTA�k�uuT

� A�k� � xuT � uyT � �uuTxuT

� A�k� � uyT � u�uT � xuT

� A�k� � u�yT � �uT �� xuT � ���

where

x � �A�k�u� yT � �uTA�k�� � � �uTx� ���

Here �� � � IR� and u� x� y � IRn� As matrix A is symmetric� x � yT � and we
obtain the following formula


A�k��� � A�k� � u�xT � �uT �� xuT � ���

Note that to execute the k�th iteration� the column vector Ak�n�k from the partial
matrix Ak�n�k�n is needed�

��� Parallel implementation of the Householder tridiagonalization

Let p be the number of processor elements �PEs�� The objective matrix A is
distributed by r � q ��D grid distribution� called grid�wise distribution �Cyclic�
Cyclic�� where r � q � p� The grid�wise distribution �Cyclic� Cyclic� distributes
the elements of A to the following PEs


aij �� P�i mod r� j mod q�� ���

where the P�idx�idy�� �idx � �� 	� ���� r � 	� idy � �� 	� ���� q � 	� means the PE
identi�cation number on the ��D grid distribution� We do not support block�
cyclic distribution because the block�cyclic distribution causes poor load balance
when n�p is small�



c Pmyidx�myidy owns row set � and
c column set � of n� n matrix A�
h�i do k��� n� �
h�i if �k � � � then

h�i broadcast�A
�k�
��k� to

� PEs sharing rows �
h�i else

h	i receive�A
�k�
��k

�
h�i endif
h
i computation of �u� � ��
h�i if �I have diagonal elements of A�
� then
h�i broadcast�u�� to
� PEs sharing columns �
h��i else
h��i receive�u� �
h��i endif
c computation of x � �A�k�u

h��i do j�k� n

h��i if �j � � � x� � x� � � A
�k�
��j �j

� endif
h�	i enddo
h��i global summation of x� to PEs
� sharing rows �

h�
i if �I have diagonal elements of A�
� then
h��i broadcast�x�� to
� PEs sharing columns �
h��i else
h��i receive�x� �
h��i endif
c computation of � � �uTx

h��i do j�k� n
h��i � � �uT�x� enddo
h��i global summation of � to
� PEs sharing rows �
c computation of
c A�k��� � A�k��u�xT ��uT ��xuT

h�	i do j�k� n
h��i do i�k� n
h�
i if �i � � �and� j � � � then

h��i update A
�k���
i�j �

� A
�k�
i�j � �i ��

T
j � ��Tj � � �i �

T
j

h��i endif enddo enddo
c remove k from active columns
c and rows
h��i if �k � � � � � � � fkg endif
h��i if �k � �� � � � � fkg endif
h��i enddo

Fig� �� Parallel algorithm for the tridiagonalization �the �Cyclic� Cyclic� grid�wise dis�
tribution��

We already developed the parallel tridiagonalization and Hessenberg reduc�
tion routines ��
 by the Householder transformation� Figure 	 shows our parallel
tridiagonalization algorithm� The routine of Figure 	 reduces communication and
broadcast times for vector reduction to a ratio of 	�

p
p� The same idea appears

in ��� �� �
� Symmetry of the matrix A was not used in the algorithm of Figure
	� and hence� the algorithm has the computational complexity of �n���� while
the algorithm using symmetry has �n���� This is because� the algorithm based
on the symmetry causes complex data accesses� and the complex data accesses
prevent easy parallel implementation�

Figure 	 gives a conclusion that implementations of the following three op�
erations a�ect the total performance�

	� The global summations of the lines h�i� h	�i� and h��i�
�� The matrix�vector product of the lines h	�i�h	�i�
�� The process to update the matrix A of the lines h��i�h��i�
These three operations are the basic operations for parallel tridiagonalization�
and the system will tune the three basic operations automatically in our auto�
tuning process�



� Method for searching parameters

In this section� the method of tuning the three basic operations automatically is
described� Hereafter� we use MPI �Message Passing Interface� as the communi�
cation library�

��� Parameter for the global summations

To perform the global summations� the following two implementations were se�
lected�

	� A routine based on the binary tree�structured communication� or
�� The MPI�ALLREDUCE function on MPI�

It depends on the implementation of MPI functions which implementation has
the higher performance� Hence� measuring their real performance is necessary to
select the best implementation� For that reason� our auto�tuning routine has a
parameter for the above two implementations�

��� Parameter for the matrix�vector product

To perform the parallel matrix�vector product �x � �A�k�u� at high perfor�
mance� the size of the stride for loop unrolling must be selected� The size of the
stride depends on the machine architectures� operating systems� and compilers
we use� Therefore� selecting the optimal number of stride without measuring its
real execution time is hard�

For example� a three�stride unrolled routine on the matrix�vector product
are shown� where the value of ilocal�length�x can be divided by � to simplify
the explanation�

m � ilocal�length�x��

j � �

do k��� m

dt� � �	�d�

dt
 � �	�d�

dt� � �	�d�

do i��� ilocal�length�y

du�y � u�y�i�

ix � init�x
i

iy � init�y
j

dt� � dt� 
 A�ix� iy � � du�y

dt
 � dt
 
 A�ix� iy
�� � du�y

dt� � dt� 
 A�ix� iy

� � du�y

enddo

x�k�j � � dt� � al

x�k�j
�� � dt
 � al

x�k�j

� � dt� � al



j � j 
 �

enddo

This example shows a case of the loop unrolling for the outer�loop k only� We
can unroll the inner�loop i or both of the loops k and i� Current target ma�
chines are vector architecture machines as explained in the Section �� Then� we
only unrolled the outer�loop� since unrolling the inner�loop shortens the loop
length which is not good for vector architecture machines� For the auto�tuning
parameter� we take the size of the stride�

��� Parameter for the process to update

As in the case of the matrix�vector product� it is necessary to set the size of the
stride for unrolling in the process to update �A�k��� � A�k��u�xT��uT ��xuT ��
For example� a two�stride unrolled routine on the process to update is shown�
where the value of ilocal�length�x also can be divided by � to simplify the
explanation�

m � ilocal�length�x�


do k��� m

j � 
��k���
�

dtu� � u�x�j �

dtu
 � u�x�j
��

dtr� � mu � dtu� � x�k�j �

dtr
 � mu � dtu
 � x�k�j
��

do i��� ilocal�length�y

du�y � u�y�i�

dx�k � x�k�i�

ix � init�x
i

iy � init�y
j

A�ix� iy � � A�ix� iy � 
 du�y � dtr� � dx�k � dtu�

A�ix� iy
�� � A�ix� iy
�� 
 du�y � dtr
 � dx�k � dtu


enddo

enddo

For the same reason as for the matrix�vector product� we only unroll the outer
loop k� The auto�tuning parameter for the process to update is the stride for
unrolling�

��� How to search these parameters

Let the parameters for the global summation� the matrix�vector product� and
the process to update be denoted as Comm	Type� Mat�Vec� and Updating� respec�
tively� The Comm	Type can take on the values f Tree� MPI�ALLREDUCE g� where
Tree means a routine based on binary tree�structured communication� and the
MPI�ALLREDUCE means communication by a MPI function� The Mat�Vec can
have the values f None� 
� �� �� �� �� �� �� g� where the numbers show the size



of the stride for unrolling� The Updating can be chosen as f None� 
� �� �� �� ��
�� �� g like in the Mat�Vec case�

Following is the description of how to search for optimal parameters� We �rst
set the following default parameter values


Comm	Type� Tree� Mat�Vec � �� Updating� �� ���

Secondly� we searched the optimal parameters by using the above initial
parameters� Method for varying the parameters is as follows�

	� Comm	Type�Tree� Mat�Vec��� and Updating is varied as f None� 
�
�� �� �� �� �� �� g�

�� Comm	Type�Tree� Mat�Vec is varied as f None� 
� �� �� �� �� �� �� g�
and Updating�f the selected value from the process 	 g

�� Comm	Type is varied as f Tree� MPI ALLREDUCE g� Mat�Vec�f the
selected value from the process � g� and Updating�f the selected
value from the process 	 g�

This method can not �nd optimal parameters if there is a dependency among
the three parameters� However� the basic operations we mentioned are separated
physically �see Figure 	�� hence� there is no dependency in the three parameters�
Therefore� we may be con�dent that our method can �nd an almost optimal set
of parameters�

As for the problem sizes� n � 	�� is speci�ed as the initial values� The
problem size is increased by using the stride of 	�� while problem size n is under
	���� the stride of 	��� while 	��� � n 	 	����� and the stride of 	���� while
n is over 	����� This increment is used in each searching process�

� Experimental results

We implemented the auto�tuning methodology on the HITACHI SR���	 and
HITACHI SR�����

The HITACHI SR���	 system is a distributed memory� message�passing par�
allel machine of the MIMD class� It is composed of 	��� PEs� each having ���
Megabytes of main memory� interconnected via a communication network hav�
ing the topology of a three�dimensional hyper�crossbar� The peak interprocessor
communications bandwidth is ��� Mbytes�s in each direction� We used the HI�
TACHI Optimized Fortran�� V�������D compiler� and the compile option we
used was �rdma �W���OPT�O�SS����

The HITACHI SR���� system is a distributed memory� message�passing par�
allel machine of the MIMD class like the HITACHI SR���	� It is composed of
	�� nodes� each having � Instruction Processors �IPs�� � Gigabytes of main
memory� interconnected via a communication network having the topology of
a three�dimensional hyper�crossbar� The peak interprocessor communications
bandwidth is 	 Gbytes�s in each direction� The SR���� system has two types



of parallel environments� named inner�node parallel processing and inter�node
parallel processing� The inner�node parallel processing is so�called parallel pro�
cessing in a sheard memory parallel machine� and there is no interprocessor com�
munication� On the other hand� the inter�node parallel processing is like parallel
processing as a distributed memory parallel machine� and it can perform inter�
processor communications� We used the HITACHI Optimized Fortran�� V�	���
compiler� and compile option we used was �W���OPT�O�SS���mp�p����� in the
inner�node parallel processing� and �W���OPT�O�SS���mp�p����� in the inter�
node parallel processing�

The communication library used for the SR���	 and SR���� was MPI� Both
machines have vector PEs in a sense� i�e� the Pseudo Vector Processor ��
� There�
fore� we can regard both machines as vector�parallel machines�

We implemented our tridiagonalization routine by using dedicated subrou�
tines which satisfy functions for the three parameters� For instance� our routine
contains a two�stride unrolled matrix�vector product subroutine� or a three�stride
unrolled subroutine to update� and so on� By using such subroutines� we can spec�
ify the arbitrary parameters� Note that our software does not generate Fortran
codes dynamically in this experiments� All auto�tuning was done at run time�

��� The results of the SR����

Results of auto�tuning Table 	 shows parameters auto�tuned on the SR���	�
The tuning time depended on the number of PEs� and the CPU elapsed time

Table �� The auto�tuned parameters on the SR�����

�a� Case of � PEs

Size Comm�Type Mat�Vec Updating

��� MPI�ALLREDUCE � �
��� Tree � �
��� Tree � �
��� Tree 	 �
	�� Tree � 	
��� Tree 	 �

�� Tree � �
��� Tree � �
��� Tree � �
���� Tree 	 	
���� Tree 	 �
���� Tree 	 	
���� Tree � �
	��� MPI�ALLREDUCE 	 	
���� MPI�ALLREDUCE 	 	

��� MPI�ALLREDUCE 	 	
���� MPI�ALLREDUCE � �

Tuning time ������ �����
�Sec�� �Hours��

�b� Case of �� PEs

Size Comm�Type Mat�Vec Updating

��� MPI�ALLREDUCE � ��
��� MPI�ALLREDUCE � 	
��� MPI�ALLREDUCE � �
��� MPI�ALLREDUCE � �
	�� MPI�ALLREDUCE � �
��� MPI�ALLREDUCE � �

�� MPI�ALLREDUCE � �
��� MPI�ALLREDUCE 	 �
��� MPI�ALLREDUCE � �
���� MPI�ALLREDUCE 	 �
���� MPI�ALLREDUCE 	 	
���� MPI�ALLREDUCE � 	
���� MPI�ALLREDUCE 	 	
	��� MPI�ALLREDUCE � 	
���� MPI�ALLREDUCE 	 	

��� MPI�ALLREDUCE 	 	
���� MPI�ALLREDUCE � �

Tuning time �				 ����
�Sec�� �Hours��



was about �� hours at most� The tendency of the tuned parameter of Comm	Type
were di�erent between � and �� PEs� and the tuned parameters of Mat�Vec and
Updating was di�erent on every problem size� From these facts� we expected
that the routine is e�ective in speeding up�

Comparison to ScaLAPACK To evaluate execution time of the tridiagonal�
ization routine �hereafter TRD�� we used the HITACHI optimized ScaLAPACK
version 	�� ��
� Its communication library used was PVM� and PBLAS �Paral�
lel BLAS� which is the computational kernel for ScaLAPACK and is optimized
by HITACHI limited� ScaLAPACK�s tridiagonalization routine �hereafter SLP
TRD� is implemented by using block�cyclic distribution� a blocked algorithm�
and symmetry of the matrix �	�
� Because of using a blocked algorithm� the size
of blocking �BL� can greatly a�ect the performance of ScaLAPACK� According
to ��
� if the problem size n is less than ����� the desirable BL is ��� and if n
is over ����� the desirable BL is 	�� on the SR���	� Considering these recom�
mended values� we evaluated the performance of the SLP TRD routines with
BL � f��� ��� ��� ���� �
�g to �nd which BL gives the best performance� In
��
 it is shown that

p
p � p

p is the best layout for the PE grid� We measured
execution time in the PE grid for a large number of PEs� When the number of
PEs is small� such as �� ��� and ��� we measured time in all combinations for
the PE grid to �nd which PE grid gives the best performance�

Table � shows execution time of the TRD	 �not auto�tuned�� TRD� �auto�
tuned�� and SLP TRD� Reasonable parameters of Comm	Type � Tree� Mat�Vec
� �� and Updating � � are speci�ed in the TRD	 �not auto�tuned�� Note that
the optimal BL size and PE grids for the SLP TRD are used� and the values are
included in Table ��

Table �� Execution time on the SR����� Unit is in second�

�a� Case of � PEs

Size SLP TRD TRD� TRD� TRD�

�Grid�BL� �not AT� �AT� 	TRD�

��� ���� ���	� ���	� ����
����� ���� ����� �����

��� ���� ����� ����� ����
����� ���� ����� �����

��� ��
� ����	 ���
	 ����
����� ��� ����� �����

��� ���� ��
�� ���	� ��	
����� ��� ����� �����

���� ���� ����
 ��
�	 ���
����� ��� ����� �����

���� ����� �����	 �����
 ���
����� ��� ����� �����

���� ������ ������� ������� ��

����� ��� ����� �����

���� ������� �	����
	 �����	�� ���
����� ���� ����� �����

�b� Case of �� PEs

Size SLP TRD TRD� TRD� TRD�

�Grid�BL� �not AT� �AT� 	TRD�

��� ���� ����� ����� ����
����� ���� ����� �����

��� ���
 ���	� ����� ����
������ ���� ����� �����

��� ���� ��	�� ��	�� ����
������ ��� ����� �����

��� ���
 ����
 ����� ����
������ ��� ����� �����

���� ���� ���	� ����
 ����
������ ��� ����� �����

���� ����� 	���� 	���� ����
����� ��� ����� �����

���� 
��
� ������ ������ ����
����� ��� ����� �����

���� �����	 ��
���
 �	����
 ���
����� ��� ����� �����



Table � shows that we obtained 	���	�� times speed�ups with respect to the
TRD	 �not auto�tuned� when problem sizes were large� such as ����� ����� As
for the SLP TRD execution time� we �nd that when problem size is small� the
TRD was faster than the SLP TRD� On the other hand� when problem sizes per
PE were large� the SLP TRD was faster than the TRD� We consider that this
is explained from the computational complexity of the TRD� since the TRD has
twice computational complexity to the SLP TRD�

Figure � shows the execution time of the TRD	 �not auto�tuned�� TRD�
�auto�tuned�� and SLP TRD in n � ���� and ���� cases� Note that the execution
time of the SLP TRD in Figure � was speci�ed the optimal BL and the PE grid�
From Figure �� we can conclude that when n � ����� the TRD is always faster

0

5

10

15

20

25

30

35

40

45

50

4 100 200 300 400 500

T
im

e 
in

 s
ec

on
ds

Number of PEs

ScaLAPACK

TRD1 (not auto-tuned)

TRD2 (auto-tuned)

512

n=2000
SR2201

�a� Case of n � ����

10

100

1000

10000

10 100 1024

T
im

e 
in

 s
ec

on
ds

Number of PEs

ScaLAPACK

TRD1 
 (not auto-tuned)

TRD2 
(auto-tuned)

n=8000
SR2201

4 1000

�b� Case of n � ����

Fig� �� Execution time for the SLP TRD and TRD in the tridiagonalization �SR������

than the SLP TRD� and the speed�up ratios are about ��� times� On the other
hand� when n � ����� the execution speed of the TRD was slower than the SLP
TRD when the number of PEs was under ��� however� when over ��� the TRDs
became faster than the SLP TRD� The e�ect of auto�tuning was high when the
number of PEs was under ���

From the experimental results� we conclude that our methodology is useful�
especially� when the problem sizes are large� In addition� the TRD is fast when
the problem sizes are small on the SR���	�

The execution time in every auto�tuning process To evaluate the auto�
tuning process in detail� we analyzed the execution time in each of our auto�
tuning process� Figure � shows the time when the problem size was �����

From Figure � �a�� we see that the speci�ed initial parameters �Comm	Type
� Tree� Mat�Vec � �� Updating � �� were worse than the case of Figure � �b��
because the ��stride of the process 	 �Updating� and the ��stride of the process
� �Mat�Vec� in Figure � �a� were not optimal parameters� and the change of
the elapsed time when varying these strides was high� Hence� we conclude that
the initial parameters were not good for the case of � PEs� and this caused



1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

1 2 4 6 8 10 12 14 16

T
im

e 
in

 s
ec

on
ds

SR2201
P=4

The stride of unrolling

The process 1
(Updating)

The process 2
(Mat-Vec)

The process 3
(Comm.Type)

(Tree) (MPI_ALLREDUCE)

initial parameters

�a� Case of p � �

100

150

200

250

300

1 2 4 6 8 10 12 14 16

T
im

e 
in

 s
ec

on
ds

SR2201
p=64

The process 1
(Updating)

The process 2
(Mat-Vec)

The process 3
(Comm.Type)

The stride of unrolling
(Tree) (MPI_ALLREDUCE)

initial 
parameters

�b� Case of p � ��

Fig� �� The execution time in every auto�tuning process� �SR����� n � �����

high speed�up ratios� On the other hand� Figure � �b� shows that the initial
parameters we speci�ed were almost optimal values� For this reason� we conclude
that we did not obtain better speed�ups on �� PEs than the speed�ups on �PEs
on the SR���	�

��� The results of SR����

Results of auto�tuning and execution time Table � shows auto�tuned pa�
rameters on the SR����� From Table �� the tendency of tuned parameters was
found to be di�erent between the inner�node parallel and inter�node parallel
environments� From this fact� we could also �nd the cases for the speed up�
Table � shows execution time of the TRD	 �not auto�tuned� and TRD� �auto�
tuned�� From Table �� we obtained about 	�	�	�� times speed�ups with respect
to the TRD	 �not auto�tuned�� The e�ect became stronger when problem size
increased� So� the authors conclude that our auto�tuning methodology is also
useful on the SR�����

� Conclusion

The authors have implemented and evaluated a tridiagonalization routine by
using an auto�tuning methodology� Selecting suitable implementations for the
global summation� the matrix�vector product� and the process to update on
the parallel tridiagonalization is the auto�tuning methodology we mentioned in
this paper� and the methodology is quite simple� Even though we used this
quite simple methodology� we could obtain about 	�	�	�� times speed�ups with
respect to the routine for which the reasonable parameters in the SR���	 and
the SR���� were speci�ed� From these results� the authors concluded that such
an auto�tuning methodology is an e�ective technique�

The auto�tuning methodology is for vector�parallel machines� The auto�tuning
methodology for the RISC based parallel machines� such as selecting blocking
factors in blocked algorithms� and evaluation on the RISC based parallel ma�
chines are parts of the future work�



Table �� The auto�tuned parameters on the SR�����

�a� Case of � Node �� IPs�
�SR����� inner�node parallel�

sheard memory�

Size Comm�Type Mat�Vec Updating

��� MPI�ALLREDUCE None None
��� MPI�ALLREDUCE � None
��� MPI�ALLREDUCE � None
��� MPI�ALLREDUCE � None
	�� MPI�ALLREDUCE 	 None
��� MPI�ALLREDUCE � �

�� MPI�ALLREDUCE � None
��� MPI�ALLREDUCE � �
��� MPI�ALLREDUCE � None
���� MPI�ALLREDUCE � �
���� MPI�ALLREDUCE � None
���� MPI�ALLREDUCE � None
���� MPI�ALLREDUCE � None
	��� MPI�ALLREDUCE � None
���� MPI�ALLREDUCE � None

��� MPI�ALLREDUCE � None
���� MPI�ALLREDUCE � None

Tuning time ����	 ���	
�Sec�� �Hours��

�b� Case of � Nodes ��� IPs�
�SR����� inter�node parallel�

distributed memory�

Size Comm�Type Mat�Vec Updating

��� Tree None �
��� Tree None None
��� Tree None �
��� Tree None None
	�� Tree None None
��� Tree None None

�� Tree None None
��� Tree � None
��� Tree � None
���� Tree � None
���� MPI�ALLREDUCE � �
���� MPI�ALLREDUCE � �
���� MPI�ALLREDUCE � ��
	��� MPI�ALLREDUCE � ��
���� MPI�ALLREDUCE � ��

��� MPI�ALLREDUCE � ��
���� MPI�ALLREDUCE � ��

Tuning time ���� ����
�Sec�� �Hours��

Table �� Execution time on the SR����� Unit is in second�

�a� Case of � Node �� IPs�
�SR����� inner�node parallel�

sheard memory�

size TRD� TRD� TRD�
�not AT� �AT� �TRD�

��� ����� ����� ����
����� �����

��� ���	� ����� ����
����� �����

��� ����� ����	 ����
����� �����

��� ���
� ��	�
 ���	
����� �����

���� ���		 ����� ����
����� �����

���� 
���� 	�	�	 ����
����� �����

���� 	���	� ������ ����
����� �����

���� ������
 ������
 ����
����� �����

�b� Case of � Nodes ��� IPs�
�SR����� inter�node parallel�

distributed memory�

Size TRD� TRD� TRD�
�not AT� �AT� �TRD�

��� ����� ����� ���	
����� �����

��� ���

 ���
� ����
����� �����

��� ���
� ����� ����
����� �����

��� ����� ���	� ����
����� �����

���� ��
�� ����� ����
����� �����

���� ����� ����	 ����
����� �����

���� ����	
 ������ ����
����� �����

���� ������� 
	���� ���	
����� �����



Acknowledgments

The authors are much obliged to Dr� Aad van der Steen at the Utrecht University
for giving us useful comments in this paper� This research is partly supported
by Grant�in�Aid for Scienti�c Research on Priority Areas �Discovery Science�
from the Ministry of Education� Science and Culture� Japan�

References

�� J� Bilmes� K� Asanovi�c� C��W� Chin� and J� Demmel� Optimizing Matrix Multiply
Using PHiPAC
 A Portable� High�performance� ANSI C Coding Methodology� In
Proceedings of International Conference on Supercomputing �� �Vienna� Austria�
���
� ������
�

�� T� Boku� K� Itakura� H� Nakamura� and K� Nakazawa� CP�PACS
 A Massively
Parallel Processor for Large Scale Scienti�c Calculations� In Proceedings of Inter�

national Conference on Supercomputing �� �Vienna� Austria� ���
� ������	�
�� H� Chang� S� Utku� M� Sakama� and D� Rapp� A Parallel Householder Tridiago�

nalization Stratagem Using Scattered Square Decomposition� Parallel Computing

� ������ ��
�����
�� M� Frigo� A Fast Fourier Transform Compiler� In Proceedings of the ���� ACM

SIGPLAN Conference on Programming Language Design and Implementation �At�
lanta� Georgia� ����� ��������

	� B� Hendrickson� E� Jessup� and C� Smith� Toward an E�cient Parallel Eigensolver
for Dense Symmetric Matrices� SIAM J� Sci� Comput� ��	�
 ������ �������	��

�� B� A� Hendrickson and D� E� Womble� The Tours�wrap Mapping for Dense Matrix
Calculation on Massively Parallel Computers� SIAM Sci� Comput� ��	�
 ������
����������


� HITACHI Ltd� Using ScaLAPACK and PBLAS Libraries for the HITACHI
SR����� Computer Centre News� the University of Tokyo ��	�
 ������ ���	��
in Japanese�

�� T� Katagiri and Y� Kanada� Performance Evaluation of Householder Method for
the Eigenvalue Problem on Distributed Memory Architecture Parallel Machine�
IPSJ SIG Notes ���HPC��	 ������ �������� in Japanese�

�� H� Kuroda and Y� Kanada� Performance of Automatically Tuned Parallel Sparse
Linear Equations Solver� IPSJ SIG Notes� ���HPC��� ������ ������ in Japanese�

��� K� S� Stanley� Execution Time of Symmetric Eigensolver� Ph�D Thesis� The Uni�
versity of California at Berkeley� ���
�

��� R� C� Whaley and J� J� Dongarra� Automatically Tuned Linear Algebra Software�
ATLAS project� http
��www�netlib�org�atlas�index�html�


