Performance Evaluation of Parallel
Gram-Schmidt Re-Orthogonalization Methods

Takahiro Katagiri!

PRESTO, Japan Science and Technology Corporation(JST)
JST Katagiri Laboratory,
Computer Centre Division, Information Technology Center,
The University of Tokyo
2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8658, JAPAN
Phone: +81-3-5841-2758, FAX: +81-3-3814-7231
katagiri@pi.cc.u-tokyo.ac. jp

Abstract. In this paper, the performance of the five kinds of parallel
re-orthogonalization methods by using the Gram-Schmidt (G-S) method
is reported. Parallelizm of the re-orthogonalization process depends on
the implementation of G-S orthogonalization process, i.e. Classical G-S
(CG-S) and Modified G-S (MG-S). To relax the parallelizm problem,
we propose a new hybrid method by using both the CG-S and MG-S.
The HITACHI SR8000 of 128 PEs, which is a distributed memory super-
computer, is used in this performance evaluation.

1 Introduction

The orthogonalization process is one of the most important processes to perform
several linear algebra computations, such as eigendecomposition and QR decom-
position [3,10,11]. Many researchers have paid more attention to QR decom-
position [2,5,6,12,13]. Notwithstanding, we focus on the re-orthogonalization
process in this paper. This is because a lot of iterative methods for solving linear
equations and eigenvector computations need the re-orthogonalization process
to maintain accuracy of results. For instance, the GMRES method, which is one
of the latest iterative algorithms, requires the re-orthogonalization process to
obtain base-vectors according to the number of its re-start frequency [4]. The
approach of parallel re-orthogonalization is the main difference with respect to
conventional parallel approaches based on QR decomposition [6, 12, 13].

Recently, there are a number of parallel machines, because parallel processing
technologies have been established. For this reason, many researchers try to par-
allelize the orthogonalization process. It is known that, however, the parallelism
of the process depends on the number of orthogonalized vectors we needed [7,
8]. The orthogonalized process, therefore, is classified as the following two kinds
of processes in this paper:

— QR decomposition
The orthogonalization process to obtain the normalized and orthogonalized
vectors qi, ¢2, -, Gn Dy using the normalized vectors a1, as, - -, Gp.

— Re-orthogonalization
The orthogonalization process to obtain the normalized and orthogonalized
vector ¢; by using the normalized and orthogonalized vectors ¢1, g2, - -, gi—1.

This paper discusses how to parallelize the re-orthogonalization process by
using the Gram-Schmidt (G-S) orthogonalization method. The focus is especially
the parallelization of Classical G-S (CG-S) method, since the CG-S method has
high parallelism. The CG-S method, however, has a trade-off problem between
accuracy and execution speed. For example, T.Katagiri reported that more than
90% execution time is wasted by using MG-S method in a parallel eigensolver
[8]. For this reason, the main aim of this paper is a proposition of a new parallel
G-S algorithm to relax the trade-off problem.

This paper is organized as follows. Chapter 2 is the explanation of sequential
G-S algorithms in the viewpoint of data dependency. Chapter 3 describes parallel
G-S algorithms based on the sequential G-S algorithms. Chapter 4 proposes the
new algorithm. Chapter 5 is the evaluation of the new algorithm by using the
HITACHI’s parallel super-computer. Finally, Chapter 6 summarizes the findings
of this paper.

2 Sequential algorithms of G-S re-orthogonalization
method

It is widely known that there are the following two methods to perform re-
orthogonalization by using the G-S method. They are known as Classical G-S
(CG-S) method and Modified G-S (MG-S) method. The CG-S method is a simply
implemented method in the formula of the G-S orthogonalization, and the MG-S
method is a modified one in order to obtain high accuracy. In this chapter, we
will explain the difference between them from the viewpoint of data dependency.

2.1 Classical Gram-Schmidt (CG-S) Method

The CG-S method to perform the re-orthogonalization is shown in Figure 1. The
notation of (-,-) in Figure 1 means an inner product.

() ¢ =ai

(2) doj=1i—-1

B @ =a - (g,a)y
(4) enddo

(5) Normalization of g;.

Fig. 1. The CG-S method in re-orthogonalization to the vector g;.

Figure 1 shows that the most inner kernel (3) has a parallelism. The nature
of this can be explained as the parallelizm of the inner product (q]T, a;), since the

inner product can be performed parallelly for j-loop when we obtain the initial
vector of a;.

2.2 Modified Gram-Schmidt (MG-S) Method

The MG-S method in re-orthogonalization is shown in Figure 2.

(1) o =a
(2) doj=1,i—1
3) o =al"Y — (qf ;)
(4) enddo

ormalization of ¢; = a; .
5) Normalization of =n

Fig. 2. The MG-S method in re-orthogonalization to the vector g;.

Figure 2 shows that there is no parallelizm to the inner product of (3}, since
the inner product depends on the defined vector aEJ U for j-loop. This is the
basic difference with the CG-S method. For this reason, many researchers believe
that the re-orthogonalization by the MG-S method is an unsuitable method for

parallel processing.

3 Parallelization of G-S orthogonalization method

With parallel processing, the re-orthogonalization by the G-S method behaves
differently according to the data distribution method for the orthogonalized
vectors qi, g2, ..., ¢i—1 [8]. We will explain this in this chapter.

3.1 Column-wise distribution

First of all, we explain a simple distribution method, named column-wise distri-
bution (CWD). The CWD is a distribution that the whole elements of the nor-
malized vector a; and the normalized and orthogonalized vectors q1,¢2, ..., ¢i—1
are distributed to each PE (Processing Element).

Next is a discussion on how to implement parallel algorithms based on the
CWD.

CG-S method Figure 3 shows a re-orthogonalization algorithm in CWD. The
notation of “Local” in Figure 3 shows that the following formula should be
performed by using local data (distributed data) only.

According to Figure 3, there is a parallelizm for computing the kernel of (9).

(1) @ =ai

(2) if (I have a;) then

(3) Broadcast (a;)

(4) else

(5) receive (a;)

6) a=0

(7) endif

(8) doj=1,i—1

(9) Local ¢; = ¢ — (g ,a:) q; enddo
(10) if (I have a;) then

(11) doj=1,i-1

(12) receive (g;) from PE that holds g;
(13) Local ¢; = ¢; + ¢; enddo

(14) else

(15) send (¢i)

(16) endif

(17) Normalization of g;.

Fig. 3. The CG-S method in column-wise distribution.

(1) ago) = a;

(3) receive (agjfl)) from PE that holds agjfl)
(4) Local agj) = agjfl) — (qu,an’”)qj

(5) send (agj)) to PE that holds aEHl)

(6) enddo

(7) Normalization of ¢; = agifl).

Fig. 4. The MG-S method in column-wise distribution.

MG-S method Figure 4 shows a re-orthogonalization algorithm in CWD.
Please note that there is no parallelizm for computing the kernel of (4) ac-
cording to Figure 3, because PE holds aEJfl) and PE holds al(»]) are located in
different places in CWD.
For this reason, the re-orthogonalization by MG-S method in CWD has ba-
sically poor parallelizm.

3.2 Row-wise distribution

Next we will explain another well-known distribution, namely row-wise distri-
bution (RWD). The RWD is a distribution in which the elements of vectors (a;,
q;) and orthogonalized vectors ¢1, g2, -..,q;—1 are distributed to different PEs.
Please note that the difference between CWD and RWD is that the CWD does
not distribute the elements of vectors.

In RWD, to calculate the inner products of (qu, agj_l)) and (qu, a;), we need
a scalar reduction operation in both of CG-S and MG-S methods for the RWD,
since each PE does not have whole elements to calculate the inner products.

CG-S method Figure 5 shows the parallel re-orthogonalization algorithm of
the CG-S method. The notation of “Global sum” in Figure 5 is the collective
communication operation, which sums up distributed data and then distributes
the result to all PEs. The collective communication can be implemented by using
the MPI_ALLREDUCE function on the MPI (Message Passing Interface).

(1) @ =ai

(2) doj=1,i—1

(3) Local (g ,ai) enddo

(4) Global sum of n; = (q; , ai).
(5) doj=1,i—1

(6) Local ¢i =gqi —m; g;

(7) enddo

(8) Normalization of g;.

Fig. 5. The CG-S method in row-wise distribution.

For Figure 5, we find that the Global sum operation is not needed in every
step because the CG-S method does not require the inner producted value cal-
culated in the most inner loop. This fact also can be found in the explanation
of Chapter 2, since there is no dependency in the direction of the j-loop. The
inner producted value is easily calculated by using the value before normaliza-
tion. The vector length of the Global sum operation depends on the number of
orthogonalized vectors ¢ — 1.

MG-S method Figure 6 shows the parallel re-orthogonalization algorithm for
the MG-S method.

For Figure 6, we find that a scalar reduction for distributed data around
PEs is essential in every steps, since the Global sum operation is located in the
innermost loop. In j + 1-th step, the MG-S method needs the inner producted
data calculated j-th step, thus we have to implement the Global sum operation
in the most inner loop. The explanation in Chapter 2 also shows the fact, since
there is a flow dependency in the direction of the j-loop.

Comparison of the number of communications Now we compare the num-
ber of execution times for the Global sum operation in the MG-S and CG-S
methods. Let the number of re-orthogonalization i be fixed as k. It is clear that

(L) 0 =a

(2) doj=1,i-1

(3) Local (¢f,ay ")

(4) Global sum of n = (qj , agj_l)).
(5) Local agj) = agj_l) —ngqj

(6) enddo

(7) Normalization of ¢; = aEi_l).

Fig. 6. The MG-S method in row-wise distribution.

the MG-S method requires & — 1 times of the Global sum operation while the
CG-S method requires 1 times. Thus, from the view point of execution times,
the CG-S method is superior to the MG-S method. The CG-S method, however,
has lower accuracy than the accuracy of the MG-S method. Therefore, we can
not determine the best parallel method in the RWD.

From the viewpoint of these variations, the RWD will be a good choice. The
discussion on the RWD, however, is omitted in this paper. The reason is that
the distributing the elements of vectors makes the implementation difficult in
many iterative algorithms and poor utility for many users.

4 Proposal of the Hybrid Gram-Schmidt (HG-S) method

In this chapter, we propose a new parallel re-orthogonalization method, named
Hybrid Gram-Schmidt (HG-S) method.

4.1 Basic idea

We have explained that there is a trade-off problem between accuracy and par-
allel execution speed in G-S method. The following is a summary of the problem
for CWD.

— CG-S Method Accuracy: Low, Parallelism: Yes
— MG-S Method Accuracy: High, Parallelism: None

To relax the problem, using both CG-S and MG-S methods for re-orthogonalization
is one of the reasonable ways. We call this “Hybrid”-ed G-S method as HG-S
method in this paper.

4.2 The HG-S re-orthogonalization method

Figure 7 shows a sketch of the algorithm for the HG-S method. Please note that
the code of Figure 7 shows the nature of re-orthogonalization process, since many
iterative algorithms, for example the inverse iteration method for eigenvector
computation, needs the re-orthogonalization like Figure 7.

Please note that we select MG-S method after CG-S method to obtain high
accuracy, since the HG-S method in Figure 7 can use MG-S orthogonalized
vectors in the process of CG-S method.

do ¢ = 1,...,maz_num_vectors
do iter = 1,...,max_iter
.I{(.e—orthogonalization (¢;) by using the CG-S Method.
g‘(ql is converged) break the iter-loop.

enddo
Re-orthogonalization (g;) by using the MG-S Method.

enddo

Fig. 7. The HG-S method in re-orthogonalization. The notations of mazx_num_vectors
and mazx_iter mean the number of vectors to orthogonalize, and the maximal number
of iterations in the iterative method, respectively.

5 Experimental Results

The HG-S method using a distributed memory parallel machine is evaluated in
this chapter. To evaluate the HG-S method, we implemented the HG-S method
to Inverse Iteration Method (IIM) for computation of eigenvectors.

5.1 Experimental environment

The HITACHI SR8000/MPP is used in this experiment. The HITACHI SR8000

system is a distributed memory, message-passing parallel machine of the MIMD

class. It is composed of 144 nodes, each having 8 Instruction Processors (IPs),

14.4GFLOPS of theoretical peak performance and 16 Gigabytes of main mem-

ory, interconnected via a communication network with the topology of a three-

dimensional hyper-crossbar. The peak interprocessor communications bandwidths
are 1.6 Gbytes/s in one-way, and 3.2 Gbytes/s in both-way.

The SR8000 system has two types of parallel environments. One is intra-
node parallel processing, and the other is inter-node parallel processing. The
intra-node parallel processing is so-called parallel processing as a shared memory
parallel machine. On the other hand, the inter-node parallel processing is similar
to parallel processing as a distributed memory parallel machine, and it should
perform interprocessor communications. The HITACHI Optimized Fortran90
V01-04 compiler is used. In this experiment, -opt=ss -parallel=0 is used as a
compile option in the inter-node parallel processing.

As communication library, optimized MPI (Message Passing Interface) by
HITACHTI is used in this experiment.

5.2 Details of implemented re-orthogonalization methods

We implemented parallel re-orthogonalization methods in IIM for eigenvector
computation [10]. The details of the IIM algorithm are summarized as follows.

Object Matrix : Tridiagonal real symmetric matrix T’

Method : The Rayleigh quotient ITM

— Max Iterative Numbers : 40

Requirement residual : ||Tz; — Aizi|l2 < ||| % €, (¢ =1,2,...,n),

where € is a machine epsilon, z; is the ¢-th eigenvector, and A; is the i-th
eigenvalue in an eigensystem.

We have developed an efficient parallel eigensolver by using a reduced com-
munication method [9]. The IIM method is also available for the eigensolver,
therefore, we measure the execution time for the routine of ITM.

The test matrices are chosen as the following.

— Matrix(1) : Tridiagonal matrix reduced from the Frank matrix
Dimension : 10,000

The length to decide the clustered eigenvalues : 58471.532
The number of groups for the clustered eigenvalues : 8
The maximum number of clustered eigenvalues : 9,993

— Matrix(2) : Glued Wilkinson W5, Matrix, § =1.0
Dimension : 10,000

The length to decide the clustered eigenvalues : 64.998
The number of groups for the clustered eigenvalues : 1
The maximum number of clustered eigenvalues : 10,000

— Matrix(3) : Glued Wilkinson W3, Matrix, § = 1074

e Dimension : 10,000

e The length to decide the clustered eigenvalues (for a block diagonal ma-
trix) : 0.129

e The number of groups for the clustered eigenvalues (for a block diagonal
matrix) : 13

e The maximum number of clustered eigenvalues (for a block diagonal
matrix) : 2

e The number of block diagonal matrices : 477

Please note that the re-orthogonalization is performed to maintain accuracy
of eigenvectors. The number of re-orthogonalized eigenvectors is the same as the
number of clustered eigenvalues.

Next, we summarize the implemented parallel re-orthogonalization methods
as follows.

CG-S (1) : Applying MG-S as local orthogonalizations
CG-S (2) : Applying CG-S as local orthogonalizations
- MG-S

— HG-S

— IRCG-S : Iterative Refinement CG-S Method [1, 10]

— NoOrt : Not Re-orthogonalized

There are two kinds of methods in the parallel re-orthogonalization of CG-S
method. The CG-S(1) is a method in which CG-S is performed inter PEs, and
MG-S is performed to intra PE data. The CG-S(2) is a method in which CG-S
is performed inter PEs, and CG-S is also performed to intra PE data.

The IRCG-S method shown above is called Iterative Refinement CG-S Method,
and this method performs CG-S method multiple times. In this experiment, the
number of CG-S method is fixed as 2 times.

5.3 The results of experiment

Table 1 shows the execution time for the five parallel re-orthogonalization meth-
ods in IIM. For the restriction of super-computer environment, over |64/[p/8]]
hours jobs are automatically killed, where p is the number of PEs.

Table 2 shows the orthogonalization accuracy of the calculated eigenvectors
by IIM, which is measured by the Frobenius norm. The Frobenius norm of n x n
matrix A = (a;5), 4, = 1, ...,n is defined as:

1Allr =

5.4 Discussion

Test matrix (1) Table 1 (a) shows there was poor parallelizm for MG-S.
The reason is explained as no parallelizm in MG-S process in CWD. On the
other hand, by using CG-S Method, we obtained speed-up factors increasing the
number of PEs.

For HG-S method, the HG-S was faster than CG-S. This is a surprising
result in a sense, because HG-S performs multi-times CG-S and one-time MG-S.
We think the main reason is that by using the HG-S method, total number of
iterations in IIM is reduced by using better accuracy eigenvalues with comparison
to eigenvectors orthogonalized by CG-S only.

In the case of the Frank matrix, we could not find the difference of accuracy
for eigenvectors except for not-orthogonalized cases. For this reason, HG-S is the
best method in this case.

Table 1. The execution time of each method in the IIM. The unit is in seconds.

(a) Test Matrix(1): Reduced Frank Matrix

#DEs(IPs)|CG-S(1)]CG-5(2)] MG-S [HG-S|TRCG-S[NoOrt
8 6604 | 6527 | 33854 | 6604 | 12883 |23.857
16 3646 | 3526 | 24308 |3574| 6987 |12.065
32 2061 | 2059 | 28050 |2082| 3906 |7.044
64 1633 | 1559 | 27960 | 1614 | 3059 |3.025
128 2091 | 2204 |>14400(2027 | 3978 |1.808

(b) Test Matrix(2): Glued Wilkinson Matrix § =1.0

#DPEs(IDs)|CG-S(1)]CG-S(2)| MG-S |HG-S[IRCG-S[NoOrt
8 7779 | 7898 | 77851 |10825] 14673 | 30.88
16 4358 | 4264 | 61242 | 4348 | 7595 |15.31
32 9533 | 2347 | 32131 | 2480 | 4429 | 8.99
64 2152 | 2110 |>28800|2189 | 3241 | 4.44
128 2696 | 2390 |>14400| 2450 | 4699 | 2.45

(c) Test Matrix(3): Glued Wilkinson Matrix § = 10~

#PEs(IPs)[CG-S(1)[CG-S(2)[MG-S[HG-S[IRCG-S[NoOrt
8 0.558 | 0.561 |0.510]0.593] 2.494 | 0.59
16 0.554 | 0.696 |1.922|1.697| 0.619 | 0.33
32 0.364 | 0.828 |0.970|0.293| 0.858 | 0.20
64 0.530 | 0.451 |0.521]0.431| 0.378 | 0.38
128 0.277 | 0.221 |0.315]0.269| 0.259 | 0.07

Test matrix (2) First of all, we have to mention that the accuracy of eigen-
vectors was very poor when we use over 32 PEs except for MG-S method. For
this reason, we should select the MG-S method in this case. As a result, if we
use 16 PEs and 8 PEs, the methods of CG-S(1), CG-S(2) and HG-S will be
considerable methods in this case.

For the execution time, we also had a surprising result for MG-S, because
although the MG-S method has no parallelizm in this case, there are speed-up
factors of MG-S. We think that the result is caused by reducing data amount by
parallel processing, however, detailed analysis for this result is a future work.

Test matrix (3) In this case, the execution time of each method is quite small
compared to the cases of the matrix (1) and (2). This reason is explained as
the implementation of parallel IIM routine. In our IIM routine, if an element of
sub-diagonals of the tridiagonal matrix T is of quite small value such as machine
€, the diagonal matrices separated by the element are treated as independent
matrices of the eigensystem. This separation can dramatically reduce computa-
tional complexity and increase parallelizm in this matrix. In the case of matrix

Table 2. The eigenvector accuracy of each method in the IIM. The norm of Frobenius

is used.
(a) Test Matrix(1): Reduced Frank matrix
(MG-S : Residual of maz;||Az; — X\iz;||2 = 0.1616E-006)
#PEs(IPs)| CG-S(1) CG-S(2) MG-S HG-S IRCG-S |NoOrt
8 0.6485E-012{0.6505E-012{0.6670E-012{0.6485E-012{0.6455E-012| 1.414
16 0.6621E-012(0.6627E-012|0.6666E-012|0.6620E-012|0.6613E-012| 1.414
32 0.6892E-012{0.6895E-012{0.6664E-012{0.6893E-012{0.6899E-012| 1.414
64 0.9422E-012|0.9413E-012(0.6665E-012{0.9412E-012|0.9419E-012| 1.414
128 |0.1546E-011]0.1547E-011| Time Out |0.1540E-011[0.1549E-011| 1.414
(b) Test Matrix(2): Glued Wilkinson Matrix § =1.0
(MG-S : Residual of maz;||Az; — X\izi||2 = 0.4476E-007)
#PEs(IPs)| CG-S(1) CG-S(2) MG-S HG-S IRCG-S |NoOrt
8 0.1261E-011{0.2679E-011|0.1432E-011|0.3087E-008|0.2137E-012| 283.7
16 0.1255E-011{0.6093E-011(0.1971E-011|0.1349E-011|0.4658E-012| 282.3
32 2.0191 1.4260 |0.5255E-012 1.967 1.9455 283.4
64 3.7387 3.5735 Time Out 3.492 3.7619 284.9
128 5.2028 4.7178 Time Out 4.9206 5.0163 284.9
(c) Test Matrix(3): Glued Wilkinson Matrix § = 107**
(MG-S : Residual of maz;||Az; — X\iz;||2 = 0.1625E-010)
#PEs(IPs)| CG-S(1) |CG-S(2)] MG-S HG-S IRCG-S |NoOrt
8 0.3966E-007| 31.50 |0.3966E-007|0.3966E-007|0.3966E-007| 31.50
16 0.3966E-007| 31.50 |0.3966E-007|0.3966E-007|0.3966E-007| 31.50
32 0.3967E-007| 31.38 |0.3966E-007]|0.3967E-007(0.3967E-007| 31.50
64 0.3966E-007| 31.31 |0.3966E-007|0.3966E-007|0.3966E-007| 31.50
128 0.3967E-007| 31.06 |0.3966E-007|0.3967E-007|0.3967E-007| 31.50

(3), the test matrix is separated by several small diagonal matrices, each has a
dimension of 21. For this reason, the number of re-orthogonalizations is reduced,
naturally and the execution time is also very shortened.

As for the accuracy of the results, we could find that the accuracy of CG-
S(2) method was poor in this matrix with comparison to CG-S(1) method. For
this result, therefore, we can say that data which holds intra PE should be
re-orthogonalized by using MG-S method, even CG-S method is used for inter
PEs.

Acculacy of all matrices The accuracy in this experiment varies according
to the number of PEs. This is also a surprising result, because the computations
of each G-S method are same. We think that the result is caused by changing
the order for the computation of G-S method, however, detail analysis is a part
of future work.

6 Conclusion

In this paper, we have proposed a hybrid Gram-Schmidt re-orthogonalized method,
and evaluated the five kinds of parallel re-orthogonalization methods including
the new hybrid method by using IIM for eigenvector computation.

For the experimental result, the new hybrid method also has an accuracy
problem for computed eigenvectors, but it has a benefit for parallel execution
time compared to CG-S method. The main reason of this is using higher accuracy
eigenvectors than that of CG-S orthogonalized, however, detailed analysis is
needed.

The analysis and additional experiments for the test matrices are important
future work.

Acknowledgments

I would like to express my sincere thanks to staff at Computer Centre Divi-
sion, Information Technology Center, the University of Tokyo, for supporting
my super-computer environments. I would also like to express my sincere thanks
to all members at Kanada Laboratory, Information Technology Center, for giving
me useful discussions for the study.

This study is supported by PRESTO, Japan Science and Technology Corpo-
ration (JST).

References

1. S. Balay, W. Gropp, L. C. McInnes, and B. Smith. Petsc 2.0 users manual, 1995.
ANL-95/11 - Revision 2.0.24, http://www-fp.mcs.anl.gov/petsc/.

2. C. Bischof and C. van Loan. The WY representation for products of Householder

matrices. SIAM J. Sci. Stat. Comput., 8(1):52-s13, 1987.

J. W. Demmel. Applied Numerical Linear Algebra. STAM, 1997.

4. J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Numerical
Linear Algebra for High-Performance Computers. STAM, 1998.

5. J. J. Dongarra and R. A. van de Geijn. Reduction to condensed form for the eigen-
value problem on distributed memory architectures. Parallel Computing, 18:973—
982, 1992.

6. B. A. Hendrickson and D. E. Womble. The tours-wrap mapping for dense matrix
calculation on massively parallel computers. STAM Sci. Comput., 15(5):1201-1226,
1994.

7. T. Katagiri. A study on parallel implementation of large scale eigenproblem solver
for distributed memory architecture parallel machines. Master’s Degree Thesis,
the Department of Information Science, the University of Tokyo, 1998.

8. T. Katagiri. A study on large scale eigensolvers for distributed memory parallel
machines. Ph.D Thesis, the Department of Information Science, the University of
Tokyo, 2000.

9. T. Katagiri and Y. Kanada. An efficient implementation of parallel eigenvalue
computation for massively parallel processing. Parallel Computing, 27:1831-1845,
2001.

w

10. B. N. Parlett. The Symmetric Eigenvalue Problem. STAM, 1997.

11. G. W. Stewart. Matriz Algorithms Volume II:Eigensystems. SIAM, 2001.

12. D. Vanderstraeten. A parallel block Gram-Schmidt algorithm with controlled loss
of orthogonality. Proceedings of the Ninth SIAM Conference on Parallel Processing
for Scientific Computing, 1999.

13. Y. Yamamoto, M. Igai, and K. Naono. A new algorithm for accurate computa-
tion of eigenvectors on shared-memory parallel processors. Proceedings of Joint
Symposium on Parallel Processing (JSPP)’2000, pages 19-26, 2000. in Japanese.

