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ABSTRACT

This paper evaluates the effect of an auto-tuning facility
with the user’s knowledge for numerical software. We pro-
posed a new software architecture framework, named FIBER,
to generalize auto-tuning facilities and obtain highly accu-
rate estimated parameters. The FIBER framework also pro-
vides a loop-unrolling function and an algorithm-selection
function to support code development by library develop-
ers needing code generation and parameter registration pro-
cesses. FIBER offers three kinds of parameter optimiza-
tion layers—install-time, before execute-time, and run-time.
The user’s knowledge is needed in the before execute-time
optimization layer. In this paper, eigensolver parameters
that apply the FIBER framework are described and eval-
uated in three kinds of parallel computers: the HITACHI
SR8000/MPP, Fujitsu VPP800/63, and Pentium4 PC clus-
ter. Our evaluation of the application of the before execute-
time layer indicated a maximum speed increase of 3.4 times
for eigensolver parameters, and a maximum increase of 17.1
times for the algorithm selection of orthogonalization in the
computation kernel of the eigensolver.
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1. INTRODUCTION

Tuning parallel computers and other complicated machine
environments is time-consuming, so an automated adjust-
ment facility for parameters is needed. Moreover, library
arguments should be reduced to make the interface easier
to use, and a facility is needed to maintain high perfor-
mance in all computer environments. To solve these prob-
lems, many packages of SATF (Software with Auto-Tuning
Facility) have been developed.

There are two kinds of paradigms for SATF. The first
paradigm is known as computer system software. Exam-
ples of this software for tuning computer system parameters
such as I/O buffer size include Active Harmony [12] and
Autopilot [9]. The other approach for the computer system
software paradigm is known as agent system software. As
an example, SANS (Self-adapting Numerical Software) [3]
introduced a network agent into their system software to
adjust parameters in numerical libraries for GRID environ-
ments.

The second paradigm is known as a numerical library.
PHIPAC [2], ATLAS and AEOS (Automated Empirical Op-
timization of Software) [1, 13], and FFTW [4] can auto-
matically tune the performance parameters of their routines
when they are installed, while ILIB [6, 7] implements both
install-time and run-time optimizations.

For formalization of an auto-tuning facility, K.Naono and
Y.Yamamoto formulated the install-time optimization known
as SIMPL [8], an auto-tuning software framework for paral-
lel numerical processing.

Although many facilities of SATF have been proposed,
these conventional facilities have a limitation from the view-
point of general applicability, because each auto-tuning fa-
cility uses dedicated methods defined in each package. As
an example of this limitation, several general numerical li-
braries contain direct solvers, iterative solvers, dense solvers,
and sparse solvers. There is no software framework to adapt
SATF to these solvers.

This paper proposes and evaluates a new and general
software framework for SATF called FIBER (Framework of
Install-time, Before Execute-time, and Run-time optimiza-
tion layers) [11, 10], a framework containing three types of
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Figure 1: Outline of process view for auto-tuning in
FIBER.

optimization layers to solve these problems.

The remainder of this paper is organized as follows: in
Section 2 we explain the framework and scenarios for FIBER,
in Section 3 we explain an adaptation of FIBER, in Sec-
tion 4 we evaluate the three types of optimization layers in
FIBER, in Section 5 we explain related work for auto-tuning
software, and, finally, we conclude with a summary of our
research.

2. FIBER FRAMEWORK

2.1 ProcessView

In the FIBER framework, there are two phases for making
and using the auto-tuning facilities: the software developer
phase and the end-user phase. Figure 1 shows the process
view. In Figure 1, there are two viewpoints which define
each phase: the viewpoint of the software developer and

that of the end-user. The explanations of these two phases
are shown below.

e Software Developer Phase:
Software developers perform the following processes to
generate auto-tuning facilities in the FIBER frame-
work.

(1a)

(1b)

Software developers, who want to add the auto-
tuning facility to their software, write operations
in their source programs using a language pro-
vided by FIBER for target regions, e.g., compu-
tation kernels in numerical computation routines.

Software developers apply a pre-process tool which
is provided by the FIBER toolkit developer. The
pre-process tool generates new source codes with
the auto-tuning facility. The automatically gen-
erated auto-tuning facilities contain three compo-
nents: (i) Parameter Optimization Component,
(it) AT-Region Selection Component, and (iii) AT-
Region Library Component. These components
are explained in the section below.

Finally, software developers open the source codes
to end-users as a library. Or, software developers
compile the source codes with a compiler, and the
compiled object code is also opened to end-users.

e Software User (End-user) Phase:
Software users use the auto-tuning software opened by
the software developer. The following three optimiza-
tion modes are performed to obtain high performance
at three different times.

(2a)

(2b)

Install-time Optimization Mode: This mode is per-
formed when the software is installed into the
end-user’s environment. The install-time opti-
mizer tries to find the hardware parameters, e.g.,
cache sizes and message communication latency,
for efficient implementations corresponding to the
user’s machine environments. End-users are un-
aware of this optimization, since the optimization
can be totally hidden in the installation or com-
pilation processes for the target software.

Before Execute-time Optimization Mode: This mode
is performed after special parameters are fixed,
based on the end-user’s knowledge. For example,
the problem size to execute for their software is
a special parameter, because the system cannot
know this value in advance. For fixed parame-
ter information, optimization is performed in this
mode. This optimization also includes the selec-
tion of the best algorithm. Compilers cannot per-
form such algorithm selection, because of the lack
of knowledge of the end-user’s algorithms.

Run-time Optimization Mode: This mode is per-
formed when target auto-tuning regions are ex-
ecuted or called. The run-time optimizer tries
to obtain run-time information, e.g., input data
characteristics such as the band matrix for nu-
merical computation, the migrated load of the
machines, and the current communication perfor-
mance (such as the communication bandwidth for



a GRID environment). Since run-time optimiza-
tion optimizes target regions with “dynamic” in-
formation, it can set the best value for a param-
eter which cannot be optimized in the above two
optimization modes.

2.2 Components
The FIBER framework supports the following components:

e Parameter Optimization Component: This com-
ponent optimizes developer-specified library parame-
ters in the PTL (Parameter Tuning Layer). There are
three different timings for the optimizations (install-
time, before execute-time, and run-time).

e AT-Region Selection Component: This compo-
nent selects the best auto-tuning region, taking into
account information from the parameter information
file and run-time optimizer.

e AT-Region Library Component: This component
is automatically generated according to pre-process
specifications from the software developer. The com-
mands of this pre-process are provided by the FIBER
toolkit developer. The regions of auto-tuning (AT-
Regions) are specified by the software developer through
a dedicated language. According to software devel-
oper’s instructions, the specified AT-regions are sepa-
rated and formed into several components. The aggre-
gation of these components form the AT-region library.

The PTL optimizes parameters to minimize a function
specified by the software developers. Even the parameters
in computer system libraries, such as MPI (Message Passing
Interface), can be specified if the interface is open to soft-
ware developers. PTL in FIBER, thus, can access system
parameters.

In our current implementation, the Parameter Optimiza-
tion and AT-Region Selection Components are implemented
using Fortran90 and MPI. For this reason, the generated
software can be executed on parallel machines which are
available to Fortran90 compilers and MPI.

2.3 Scenariosand Optimization Classifications

231 TwokScenarios for Using The FIBER Frame-
wor

In this section, we will show two scenarios for using the
FIBER framework from the viewpoint of software developers
and end-users.

Figure 2 shows the process view for the software develop-
ers. In Figure 2, software developers specify the auto-tuning
instructions for their software using a specification language.
The loop-unrolling depth, block length for blocking algo-
rithms, and method for algorithm selection are target in-
structions in this scenario. After specifying the instructions,
the developer executes a pre-process command named A B-
CLibCodeGen. According to the developer’s instructions,
the pre-processor generates new source codes containing the
auto-tuning facilities,. Finally, the source (object) codes are
released to the public as a library.

Figure 3 shows the process view for the end-users. In Fig-
ure 3, end-users who want to use the released library can
download and install the library to their computer environ-
ments. When they install the library, FIBER install-time
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Figure 2: Process view for software developers.
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optimization is performed, but the end-users are not aware
of this optimization. The FIBER install-time optimization
sets the estimated best parameters with information from
the end-user’s machine environments. Finally, the installer
generates a semi-optimized library with the estimated best
parameters. The end-users develop or debug their software
with the semi-optimized library.

After finishing developing or debugging the software, end-
users perform an optimization, which is defined by the soft-
ware developer, with the end-user’s knowledge. This opti-
mization is called the FIBER, before execute-time optimiza-
tion. The problem sizes to execute and the characteristics
of the input matrix data are assumed information in this
scenario. After optimizing is finished, the fully optimized
object is generated. End-users can then perform a large-
scale computation with the fully optimized object.

Finally, the target library is called, and the system opti-
mizes the remaining parameters with run-time information.
This optimization is called the FIBER run-time optimiza-
tion. By using the run-time optimization, the target library
is fully and completely optimized.

This is a typical scenario using the FIBER framework.

2.3.2 Further Optimization Classifications

The optimization procedure is further classified in this
section. The install-time, before execute-time, and run-time
optimization modes are explained in the previous section,
along with scenarios from the viewpoints of the software
developer and end-user. Additional FIBER optimization
modes for computer environments are classified and several
scenarios are given below.

1. Hybrid Install-time, Before Ezecute-time, and Run-
time Optimizations (Fully Hybrid Model): This is a
typical model for FIBER. We showed the scenario in
Section 2.3.1.

2. Hybrid Install-time and Before Execute-time Optimiza-
tions (Fully Install-time Optimization Model): This
model is used for homogeneous computing environ-
ments, e.g., a PC cluster with homogeneous PEs and
stable communication performance. Since the perfor-
mance of computation and communication is stable,
dynamic information for the computer environments
is not needed. The optimization speed and execution
time for the target process are faster than for the Fully
Hybrid Model because this model does not need run-
time optimization.

3. Hybrid Before Ezecute-time and Run-time Optimiza-
tions (Feedback Optimization Model): This model is
used for heterogeneous and unstable computing envi-
ronments, e.g., GRID environments. In run-time opti-
mization, dynamic information for computer environ-
ments is stored in the parameter information file. After
that, the information is used to optimize target pro-
cesses in the before execute-time optimization. This is
a feedback system for the FIBER framework. In this
model, a launch-time scheduler for GRID is one of the
target processes, but the usage of this model is not lim-
ited to GRID environments. Before execute-time opti-
mization with run-time information in this model can
be used in code optimizations (Consider this as com-
piler code optimizations with run-time information.)

4. Complete Install-time Optimization (Conventional Install-
time Model): This model is classified as a conventional
auto-tuning facility for a numerical library.

5. Complete Before Ezecute-time Optimization (Fully User
Knowledge Optimization Model): This model is used
for optimizing algorithms, or reducing the total mem-
ory size for the library. Given the user’s knowledge,
the execution speed and total amount of memory for
the library can be reduced.

6. Complete Run-time Optimization: This model is clas-
sified as conventional auto-tuning middleware at run-
time.

3. ADAPTATIONFORFIBERAUTO-TUNING
FACILITY

3.1 Specification of Performance Parameters
by Library Developers

In the FIBER framework, library developers can imple-
ment detailed instructions to specify the performance pa-
rameters of PP (See [11, 10]) and target areas of auto-
tuning in their programs. Hereafter, the target area is called
the tuning region. Typical instruction operators, named un-
rolling instruction operator (unroll) and selection instruc-
tion operator (select), are shown below.

3.1.1 Specification Format

First of all, we will explain the specification format in
the dedicated language for FIBER. In the source program,
the line 'ABCLib$ is regarded as a FIBER instruction. The
overall notation is shown in Figure 4.

'ABCLib$ (Auto-tuning Type) (Function Name)
[ (Target Variables) ] region start
[ 'ABCLib$ (Detail of Function) [ sub region start ] ]

Tuning Region

[ 'ABCLib$ (Detail of Function) [ sub region end | |
'ABCLib$ (Auto-tuning Type) (Function Name)
[ (Target Variables) ] region end

Figure 4: Instruction format of auto-tuning in

FIBER.

The (Auto-tuning Type) and (Function Name) in Figure 4
are called instruction operators. The instruction operator
(Auto-tung Type) can specify the three kinds of timing—
install-time optimization (install), before execute-time op-
timization (static), and run-time optimization (dynamic).
The way to process the target code and details for the auto-
tuning method can be specified by the instruction operator
(Function Name).

3.1.2 Example of Unrolling Instruction Operator

The following code shows an example of an unrolling in-
struction operator.

'ABCLib$ install unroll (j) region start
'ABCLib$ varied (j) from 1 to 16
'ABCLib$ fitting polynomial 5 sampled (1-4,8,16)



do j=0, local_length_y-1
tmpul = u_x(j)
tmprl = mu * tmpul - y_k(j)
do i=0, local_length_x-1
A(i_x+i, i_y+j) = A(i_x+i, i_y+j)
+ u_y(i)*tmprl - x_k(i)*tmpul
enddo
enddo
'ABCLib$ install unroll (j) region end

The above code shows that the loop-unrolled codes for j-

loop, which adapts unrolling to the tuning region of region start

— region end, are automatically generated. The depth of
the loop unrolling is also automatically parameterized as
PP.

The instruction operator specifies detailed functions for
the target instruction operator, and so it is called the sub-
instruction operator. The sub-instruction operator varied
defines the defined area of the target variables. In this exam-
ple, the area is {1, ..,16}. For the cost definition function,
the types can be specified by the sub-instruction operator
fitting. In this example, a 5Hth-order linear polynomial
function is specified. The sub-instruction operator sampled
defines the sampling points for estimating the cost definition
function. This example of sampling is {1-4,8,16}.

3.1.3 Example of Selection Instruction Operator

The following code shows an example of the selection in-
struction operator.

'ABCLib$ static select region start
'ABCLib$ parameter (in CacheS, in NB, in NPrc)

'ABCLib$ select sub region start

'ABCLib$  according estimated

!ABCLib$ (2.0d0*CacheS*NB) / (3.0d0*NPrc)
Target Process 1

'ABCLib$  select sub region end

'ABCLib$ select sub region start

'ABCLib$  according estimated

'ABCLib$ (4.0d0*CacheS*dlog(NB))/(2.0d0*NPrc)
Target Process 2

'ABCLib$ select sub region end

'ABCLib$ static select region end

The above code shows that the selection procedure from
several tuning regions, which are specified by sub region
start — sub region end, is performed based on the values
of the formulas, which are specified by the sub-instruction
operator according estimated.

The variables referred to in the formulas are defined by the
sub-instruction operator parameter. The sub-instruction
operator in shows that the target variables are input vari-
ables. The values of the variables should have been stored in
a parameter information file in the install-time optimization
layer by using the sub-instruction operator out, since this
example is defined as a before execute-time optimization.

Please note that the selection of Target Process 1 or Tar-
get Process 2 is parameterized as PP in this example.

3.2 Objective of Auto-tuning

[Example 1] A conventional parallel numerical library
interface:

call PEigVecCal(
A, x, lambda, n, (D)

nprocs, myid, iDistInd, ... (1)
ictr, imv, iud, kbi, kort, ichit, ihitk,
ibl, iop, isp, ioo, iso, Lo (ddid)
MAXITER, deps oodv) )

For this paper, the arguments in Example 1 are called as
(i) Basic information parameters, (ii) Parallel control pa-
rameters, (iii) Performance parameters, and (iv) Algorithm
parameters. For example, the dimension sizes of matrix A
are specified in the parameters of (i), the data distribution
information in the parameters of (ii), the unrolling depth or
block size in the parameters of (iii), and the maximum itera-
tive numbers in the parameters of (iv). Generally speaking,
these arguments can be removed to design a better library
interface for (ii), and to analyze numerical characteristics for
(iv). The parameters of (iii), however, cannot be removed in
conventional frameworks which do not have the auto-tuning
facility.

The goal of the auto-tuning facility is to maintain perfor-
mance and remove the parameters of (iii). Using the auto-
tuning facility, the interface can be simplified as:

call PEigVecCal(A, x, lambda, n)

3.3 An Adaptation in The Install-time Opti-
mization Layer (I0OL)
The auto-tuning facility of FIBER is adapted to an eigen-

solver in this section. This is implemented using the Householder-

Bisection-Inverse iteration method for computing all eigen-
values and eigenvectors in dense, real symmetric matrices.
The cost definition function as the execution time for the
solver is defined here.

Let the interface of the target library in the Householder-
Bisection-Inverse iteration method be the same interface as
PEigVecCal, shown in Example 1. The main arguments of
this library are:

e PP = { ictr, imv, iud, kbi, kort, ichit, ihit, ibl,
iop, isp, ioo, iso }

¢ BP = { n, nprocs }

The library interface PEigVecCal consists of the following
four kinds of performance parameters for PP in this library.

1. Householder tridiagonalization routine:
PP ={ictr, imv, iud }

2. Bisection routine : PP = { kbi }
3. Inverse iteration routine: PP = { kort }

4. Householder inverse transformation routine:
PP = { ichit, ihit }

5. QR decomposition routine with the Gram-Schmidt method:

PP = { ibl, iop, isp, ioo, iso }

The main definition area and process in each parameter are
defined as:
The main definition areas in this example are:

e ictr = { 0, 1 } : Communication method for re-
duction operation in the Householder tridiagonaliza-
tion routine. ictr=0 means using an implementation
with one-to-one communication libraries (MPI_SEND,
MPI_RECV.) ictr=1 means using an implementation
with an MPI released library (MPI_ALLREDUCE.)



e imv = { 1,2,..,16 } : Unrolling depth for the outer
loop of a matrix-vector product in the Householder
tridiagonalization. The kernel is formed as a double
nested loop, BLAS2.

e iud ={1,2,..,16 } : Unrolling depth for the outer loop
of an updating process in the Householder tridiagonal-

ization. The kernel is formed as a double nested loop,
BLAS2.

e kort = { MG-S, CG-S, IRCG-S, NoOrt } : Types
of algorithms in the inverse iteration routine for re-
orthogonalization algorithms to calculate eigenvectors
corresponding to clustered eigenvalues.

e ichit = { 1,2,3 } : Communication method for the
gathering operation in the Householder inverse trans-
formation routine. ichit=1 means an implementation
using an MPI broadcast routine (MPI_BCAST). ichit=2
means an MPI blocking one-to-one communication rou-
tine (MPI_SEND, MPI_RECV.) ichit=3 means an MPI

non-blocking one-to-one communication routine (MPI_SEND,

MPI_IRECV.)

e ihit = { 1,2,...,16 } : Unrolling depth for the outer
loop of the Householder inverse transformation rou-
tine. The kernel is formed as a double nested loop,
and this is classified as BLASI.

e ibl ={1,2,3,4,8,16 } : Blocking length for the blocked
algorithm of QR decomposition with the Gram-Schmidt
method. The blocking length can also control commu-
nication frequency and volume. The kernel is formed
as a triple nested loop, and this is classified as BLAS3.

e iop = {1,2,3,4 } : Unrolling depth of the outer loop
for pivot PEs in the QR decomposition routine.

e isp ={1,2,3,4,8,16 } : Unrolling depth of the second
loop for pivot PEs in the QR decomposition routine.

e ioo={1,2,34 }: Unrolling depth of the outer loop for
the updating process in the QR decomposition routine.

e iso ={1,2,3,4,8,16 } : Unrolling depth of the second
loop for the updating process in the QR decomposition
routine.

The set of parameters which are optimized in IOL is:

e JOP = { ictr, imv, iud, kbi, ichit, ihit, ibl, iop,
isp, ioo, iso }.

The parameter kort cannot be included in the IOL param-
eters, since it depends on the input matrix characteristics.

3.3.1 How To Estimate Parametersin IOL

The IOL parameters are estimated when the target com-
puter systems, such as the computer hardware architecture
or compilers, are fixed. This is because these parameters can
be affected by the number of registers, the size of caches, vec-
tor processing factors, and other computer hardware char-
acteristics.

The parameters are determined in the following way. First,
the parameters in BP are fixed, and several points for the
execution time at the target process are sampled (hereafter
referred to as sampled data). The cost definition function is
then determined by using the sampled data.

4. EVALUATIONFORFIBERAUTO-TUNING
FACILITY

4.1 Machine Environments

We use the following three kinds of parallel computers to
evaluate FIBER optimization facilities.

e HITACHI SR8000/MPP

— System configuration: The HITACHI SR8000/MPP
nodes have 8 PEs. The theoretical maximum per-
formance of each node is 14.4 GFLOPS. Each
node has 16 GB memory, and the inter-connection
topology is a three-dimensional hypercube. Its
theoretical throughput is 1.6 Gbytes/s for one-
way communication, and 3.2 Gbytes/s for two-
way. For the communication library, the HITACHI
optimized MPI was used.

— Compiler : The HITACHI Optimized Fortran90
V01-04 compiler specified options, -opt=4 -parallel=0
and -opt=0 -parallel=0, were used.

e Fujitsu VPP800/63

— System configuration: This machine is a vector-

parallel style of super-computer. The Fujitsu VPP800/63

at the Academic Center for Computing and Me-
dia Studies, Kyoto University was used. The total
number of nodes for the VPP800 is 63. The the-
oretical maximum performance of each node is 8
GFLOPS for vector processing, and 1 GFLOPS
for scalar processing. Each node has 8 GB mem-
ory, and the inter-connection topology is a cross-
bar. Its theoretical throughput is 3.2 Gbytes/s.
For the communication library, the Fujitsu opti-
mized MPI was used.

— Compiler : The Fujitsu optimized UXP/V For-
tran/VPP V20L20 compiler specified options, -
05 -X9 and -00 -X9, were used.

e PC Cluster

— System configuration: The Intel Pentium4 2.0 GHz,
as a node of a PC cluster, was used. The number
of PEs for the PC cluster is 4, and each node has
1 GB (Direct RDRAM/ECC 256 MB*4) mem-
ory. The system hardware board is the ASUSTek
P4T-E4+A (Socket 478). The network card is the
Intel EtherExpressProl00+. Linux 2.4.9-34 and
MPICH 1.2.1 are used as the operating system
and communication library.

— Compiler : The PGI Fortran90 4.0-2 compiler
specified options, -fast and -O0, were used.

4.2 Target Processes

We will evaluate auto-tuning facilities in the FIBER frame-
work by using the following four processes for the eigen-
solver.

1. Householder tridiagonalization routine:
PP = {ictr, imv, iud }

2. Inverse iteration routine: PP = { kort }



3. Householder inverse transformation routine:
PP = { ichit, ihit }

4. QR decomposition routine with the Gram-Schmidt method:

PP = { ibl, iop, isp, ioo, iso }
4.3 Hypothesis

In this evaluation, we set the following hypotheses.

e Cost Definition Function (CDF): 5th-order linear poly-
nomial function of a12® +asz*+asz® +asr’+aszr' +as.

e We define the CDF as the execution speed.

e The least-squares method with Householder QR de-
composition is used to estimate the coefficient of the
CDF.

e Sampling points for problem sizes of n:

— SR8000:
Option -opt=4 : {100,200,...,1000,2000,...,6000}
Option -opt=0: {100,200,...,1000,2000}

— VPP800:
Option -05 : {100,200, ...,1000,2000,...,6000 }
Option -00 : {100,200,...,900}

— PC Cluster:

Option -fast: {100, 200,...,1000,2000,...,9000,10000}

Option -00 : {100, 200....,2000}

These values were determined from the limitation of
computation time for each machine.

4.4 Experimentson The Effect of IOL

The effect of IOL for the parameters of iud using several
kinds of machine environments is also evaluated.

[Experiment 1] Evaluate the effect of IOL.

Tables 1, 2 and 3 show the IOL effect in this experiment.
As a result, the following observations are obtained:

e The default parameters are not always nearly optimal.
In the worst case, we found the default parameters to
be a factor of 4.4 times slower than the best. Using
constant parameters, hence, is not sufficient from the
performance viewpoint.

e Taking into account the ratios between best and worst,
we conclude that some kind of tuning facility is needed.
This is because we found that the worst case has a huge
speedup factor of 14.

e The QR decomposition routine has more potential for
optimization compared to the tridiagonalization and
Householder Inverse Transformation routines. This is
because the routine of QR decomposition is blocked,
and thus the specification of block length is sensitive
to performance.

4.5 Experimentson The Effect of BEOL (Be-
fore Execute-time Optimization Layer)

In FIBER, the BEOL optimization is performed when the
parameters in BP (Basic Parameters, see [11, 10]) are spec-
ified by the library user before executing the target process.
This section explains several adaptations of this layer.

[Situation 1] In Example 1, library users know the num-
ber of processors (=8 PEs), and matrix sizes (=8192) for

the eigenvalue computation. (n = 8192, nprocs = 8) In
Situation 1, the parameters to optimize in BEOL are

¢ BEOP = { ictr, imv, iud, kbi, ichit, ihit, ibl,
iop, isp, ioo, iso }.

Please note that IOL uses totally estimated parameters
with sampling points determined by the library developer.
In BEOP, however, library users directly specify the real
sampling points to inform the FIBER optimization system,
even though BEOP has the same PP parameters with re-
spect to IOL. This is because library users know the real
numbers of PP, such as problem size n. The accuracy of
parameters estimated in BEOP, hence, is better than that
of IOP. BEOP can be used in processes which need highly
accurate estimated parameters.

451 Experiment of The Effect of Eigensolver Pa-
rameters

In this section, the FIBER BEOL is evaluated on the three
kinds of parallel computers.

[Experiment 2] Evaluate the effect of BEOL in Situa-
tion 1, where library users know the real problem sizes to
execute. For example, the problem sizes are 512, 5123, and
6123, which are not included in the sampling points of n.

Figures 7 and 8 show the IOL and BEOL effects in this
experiment. The following can be pointed out from the re-
sults.

e IOL estimated parameters are not always optimal, but
they are sufficient in many cases. This indicates that
the 5th-order polynomial function is a sufficient esti-
mation in a sense.

e BEOL effects are about 10%—50% speedups compared
to the IOL estimated parameters.

e We found, however, the case that IOL estimations to-
tally failed. In this case, a speedup factor of 3.4 for
IOL estimated parameters is obtained.

The above points indicate that BEOL is a needed facility
for the following reasons: (1) BEOL can improve the speed
by about 10%-50% compared to IOL optimization results;
(2) To avoid the failures of IOL estimation, BEOL should be
performed. This also indicates that BEOL can assure users
of library performance.

4.5.2 Experiment of The Effect of Algorithm Selec-
tion

[Experiment 3] Let the library users know the informa-
tion that the target matrix coefficients are not changed. In
this situation, evaluate the effect of the FIBER BEOL for
the parameters of kort.

The following is an example of BEOL optimization, where
a user wants to solve the eigenvalues and eigenvectors of a

Frank matrix order 10,000 by using the HITACHI SR8000/MPP.

Tables 4 and 5 show the results for the execution time
and accuracy of the eigenvector with different parameters of
kort.

Table 4 shows that the execution time differed accord-
ing to the re-orthogonalization methods in the Frank ma-
trix. Taking into account the numerical stability, the MG-S
method was selected as the de facto parameter in several
libraries.



Table 1: IOL Effect on the Three Kinds of Parallel Machines (Householder Tridiagonalization Routine.) The
default parameter is (0,8,6). One second is the unit for execution time.

(a) HITACHI SR8000/MPP
(a-1) Compiler Option (-opt=4)
Dim. | Default Worst (ictr,imv,iud) Best (ictr,imv,iud) | Default/Best Best/Worst

100 | 0.027 0.028 (0,8,14) 0.026 (0,4,4) 1.02 1.08
200 | 0.062 0.064 (0,8,3) 0.059 (0,4,4) 1.06 1.08
400 | 0.170 0.178 (0,8,1) 0.166 (0,11,11) 1.02 1.07
1000 | 1.0 1.23(0,8,1) 1.00 (0,13,13) T.04 1.23
6000 | 141 176 (0,8,1) 130 (0,16,16) 1.08 1.35

(a-2) Compiler Option (-opt=0)
Dim. | Default Worst (ictr,imv,iud) Best (ictr,imv,iud) | Default/Best Best/Worst

100 | 0.036 0.040 (0,8,1) 0.035 (0,4,4) 1.02 1.14
200 | 0.129 0.169 (0,8,1) 0.128 (0,6,6) 1.00 1.31
400 | 0.793 1.28 (0,8,1) 0.777 (0,9,9) 1.02 1.65
1000 | 11.0 25.9 (0,3,1) 10.8 (0,6,6) 101 2.38
2000 | 83.1 207 (0,8,1) 818 (0,6,6) 101 253

(b) Fujitsu VPP800/63
(b-1) Compiler Option (-0¥5)
Dim. | Default Worst (ictr,imv,iud) Best (ictr,imv,iud) | Default/Best Best/Worst

100 | 0.011 0.012 (0,15,2) 0.011 (1,9,9) 1.02 1.04
200 | 0.025 0.027 (0,9,10) 0.024 (1,7,7) 1.02 1.09
400 | 0.058 0.063 (0,1,3) 0.056 (1,10,10) 1.03 112
1000 | 0.227 0.265 (0,1,10) 0.213 (1,16,16) 1.06 1.24
6000 | 18.6 21.7 (0,1,2) 18.2 (1,16,16) 1.02 1.18

(b-2) Compiler Option (-00)
Dim. | Default Worst (ictr,imv,iud) Best (ictr,imv,iud) | Default/Best Best/Worst

100 | 0.073 0.081 (0,8,16) 0.072 (1,5,5) 1.01 1.12
200 | 0.490 0.547 (0,8,16) 0.485 (1,10,10) 1.01 112
400 | 3.68 411 (0,8,16) 3.65 (1,15,15) 1.01 112
1000 | 56.0 62.5 (0,8,16) 55.4 (1,15,15) 1.01 1.12
2000 | 448 498 (0,8,16) 442 (1,16,16) 1.01 1.12

(c) PC Cluster
(c-1) Compiler Option (-fast)

Dim. | Default Worst (ictr,imv,iud) Best (ictr,imv,iud) | Default/Best Best/Worst
100 0.097 1.32 (0,8,1) 0.094 (1,13,13) 1.03 14.06
200 0.235 0.762 (0,11,3) 0.231 (0,11,11) 1.01 3.28
00 | 1.97 .41 (0,1,4) 0.685 (0,10,10) 2.88 351
1000 | 7.23 812 (0,8,13) 3.36 (1,4,4) 2.15 241
10000 1352 1552 (0,8,13) 1076 (1,5,5) 1.25 1.44

(b-2) Compiler Option (-00)

Dim. | Default Worst (ictr,imv,iud) Best (ictr,imv,iud) | Default/Best Best/Worst
100 0.100 0.515 (0,8,1) 0.095 (1,13,13) 1.04 5.39
200 0.248 0.875 (0,8,11) 0.235 (1,8,8) 1.05 3.72
400 0.807 1.29 (1,3,16) 0.777 (0,8,8) 1.03 1.66
1000 | 5.22 6.38 (0,14,0) 5.08 (0,8,9) 1.02 1.25
2000 26.6 29.8 (0,8,12) 25.8 (0,6,6) 1.02 1.15




Table 2: IOL Effect on the Three Kinds of Parallel Machines (Householder Inverse Transformation Routine.)
The default parameter is (1,1). One second is the unit for execution time.

(a) HITACHI SR8000/MPP
(a-1) Compiler Option (-opt=4)

Dim. | Default Worst (hitk,ichit) Best (hitk,ichit) | Default/Best Best/Worst
100 | 0.002 0.007 (3,3) 0.002 (3,1) 1.20 3.23
200 0.012 0.019 (8,3) 0.008 (8,2) 1.42 2.28
400 0.088 0.088 (1,1) 0.057 (10,1) 1.55 1.55
1000 | 1.16 1.16 (1,1) 0.736 (5,2) 1.58 1.58
6000 | 228 310 (15,3) 158 (15,1) 144 2.01
(a-2) Compiler Option (-opt=0)
Dim. | Default Worst (hitk,ichit) Best (hitk,ichit) | Default/Best Best/Worst
100 | 0.030 0.030 (L,1) 0.011 (13,1) 2.64 2.64
200 0.126 0.126 (1,1) 0.071 (5,1) 1.76 1.76
400 2.00 2.00 (1,1) 0.562 (10,1) 3.57 3.57
1000 | 42.1 221 (1,1) 9.40 (5,2) 147 147
2000 | 334 334 (1,1) 748 (5,2) 147 147
(b) Fujitsu VPP800/63

(b-1) Compiler Option (-0¥5)
Dim. | Default Worst (hitk,ichit) Best (hitk,ichit) | Default/Best Best/Worst
100 0.004 0.004 (1,1) 0.002 (12,2) 1.72 1.72
200 0.015 0.015 (1,1) 0.007 (16,2) 1.97 1.97
200 | 0.057 0.057 (L,1) 0.025 (16,2) 2.2 2.2
1000 0.409 0.409 (1,1) 0.195 (13,2) 2.09 2.09
6000 | 433 433 (1,1) 26.2 (14,3) 1.65 1.65

(b-2) Compiler Option (-00)
Dim. | Default Worst (hitk,ichit) Best (hitk,ichit) | Default/Best Best/Worst
100 0.081 0.081 (1,1) 0.063 (12,2) 1.29 1.29
200 | 0.626 0.626 (1,1) 0.479 (10,2) 1.30 1.30
100 | 493 1.93 (1,1) 3.76 (14,3) 1.31 1.31
1000 76.4 76.4 (1,1) 58.3 (13,3) 1.30 1.30
2000 612 612 (1,1) 467 (15,1) 1.31 1.31

(c) PC Cluster

(c-1) Compiler Option (-fast)
Dim. | Default Worst (hitk,ichit) Best (hitk,ichit) | Default/Best Best/Worst
100 | 0.086 0.250 (3,1) 0.070 (13,3) 1.24 357
200 0.265 0.337 (2,1) 0.265 (1,1) 1.00 1.27
400 | 1.06 1.12 (16,1) 1.06 (1,1) 1.00 1.06
1000 | 7.30 7.99 (11,1) 7.30 (L,1) 1.00 1.09
10000 1874 2876 (15,1) 1871 (1,3) 1.00 1.53

(c-2) Compiler Option (-00)
Dim. | Default Worst (hitk,ichit) Best (hitk,ichit) | Default/Best Best/Worst
100 0.085 0.109 (2,3) 0.072 (2,2) 1.19 1.51
200 0.288 0.32 (10,1) 0.285 (2,1) 1.01 1.13
100 | 1.24 1.32 (2,0) 1.20 (11,1) 1.03 1.09
1000 | 9.69 9.69 (1,1) 9.01 (3,1) 107 107
2000 52.8 52.8 (1,1) 47.0 (3,3) 1.12 1.12




Table 3: IOL Effect on the Three Kinds of Parallel Machines (QR Decomposition Routine.) The default

parameter is (4,4,8,4,8). One second is the unit for execution time.

(a) HITACHI SR8000/MPP
(a-1) Compiler Option (-opt=4)

Dim. | Default Worst (ibl,iop,isp,ico,iso) Best (ibl,iop,isp,ioo,iso) | Default/Best Best/Worst
100 | 0.002 0.003 (16,4,3,4,8) 0.002 1.00 1.54
200 | 0.014 0.019 (6,1,2,1,8) 0.012 (6,1,2,3,3) 1.14 1.60
400 | 0.103 0.139 (6,2,2,1,16) 0.081 (6,2,2,4,6) 127 172
1000 | 1.50 2.06 (8,1,4,1,16) 1.08 (3,1,4,4,4) 1.38 1.89
6000 | 379 105 (16,2,1,4,1) 231 (16,2,1,4,4) 1.63 174
(a-2) Compiler Option (-opt=0)
Dim. | Default Worst (ibl,iop,isp,ico,iso) Best (ibl,iop,isp,ioo,iso) | Default/Best Best/Worst
100 | 0.022 0.031 (8,1,3,2,16) 0.017 (8,1,3,3,4) 127 177
200 0.150 0.216 (8,1,2,1,16) 0.083 (8,1,2,4,8) 1.80 2.60
100 | 1.21 1.66 (8,1,2,1,16) 0.583 (8,1,2,4,8) 2.08 2.85
1000 | 17.9 25.6 (8,1,3,1,10) 757 (8,1,3,4,8) 2.37 3.38
2000 | 147 918 (16,4,3,3,1) 68.7 (16,4,3,4,16) .14 317
(b) Fujitsu VPP800/63
(b-1) Compiler Option (-0¥5)
Dim. | Default Worst (ibl,iop,isp,ioo,iso) Best (ibl,iop,isp,ioo,iso) | Default/Best Best/Worst
100 0.002 0.004 (1,4,8,4,8) 0.001 (8,1,3,4,8) 1.61 2.78
300 | 0.008 0.011 (8,1,3,1,16) 0.004 (8,1,3,4,3) 1.96 2.70
100 | 0.034 0.052 (8,4,4,1,16) 0.015 (8,4,4,4,3) 2.28 3.45
1000 | 0.302 0.388 (16,2,6,2,1) 0.153 (16,2,6,4,8) 1.96 2.52
6000 48.2 67.3 (8,1,3,1,16) 28.6 (8,1,3,3,8) 1.68 2.35
(b-2) Compiler Option (-00)
Dim. | Default Worst (ibl,iop,isp,ioo,iso) Best (ibl,iop,isp,ioo,iso) | Default/Best Best/Worst
100 0.154 0.234 (8,1,3,1,16) 0.078 (8,1,3,4,8) 1.97 2.98
200 | 1.20 1.82 (8,1,3,1,16) 0.538 (8,1,3,4,8) 2.24 3.39
100 | 9.37 145 (8,1,3,1,16) 3.60 (8,1,3,4,8) 2.60 1.03
500 18.3 28.4 (8,1,3,1,16) 7.16 (8,1,3,4,8) 2.56 3.96
900 | 106 165 (3,1,4,1,16) 38.7 (3,1,4,4,8) 2.75 127
(c) PC Cluster
(c-1) Compiler Option (-fast)
Dim. | Default Worst (ibl,iop,isp,ioo,iso) Best (ibl,iop,isp,io0,iso) | Default/Best Best/Worst
100 0.016 0.710 (6,1,5,1,3) 0.015 (6,1,5,4,3) 1.04 46.2
200 0.058 0.142 (3,1,3,4,16) 0.056 (3,1,3,4,8) 1.02 2.50
100 | 0.225 1.20 (3,3,16,4,16) 0.219 (3,3,16,4,3) 1.03 550
1000 | 2.07 16.0 (6,4,2,4,16) 154 (6,4,2,4,5) 1.34 10.3
10000 | 2016 16619 (3,4,4,4,16) 1268 (8,4,4,4,4) 1.59 13.1
(c-2) Compiler Option (-00)
Dim. | Default Worst (ibl,iop,isp,ico,iso) Best (ibl,iop,isp,ioo,iso) | Default/Best Best/Worst
100 0.016 0.070 (1,4,8,4,8) 0.016 (6,4,8,3,3) 1.03 4.39
200 0.060 0.077 (1,4,8,4,8) 0.059 (6,1,4,3,5) 1.02 1.30
100 | 0.393 0.482 (1,4,8,4,3) 0.246 (16,1,5,4,4) 159 1.95
1000 | 5.76 6.90 (8,3,3,1,16) 1.97 (8,3,3,48) 2.92 3.50
2000 44.2 56.9 (8,3,3,1,16) 16.2 (8,3,3,4,8) 2.73 3.51




Table 4: Execution time of each re-orthogonalization
method in the inverse iteration method. (HITACHI
SR8000/MPP, n = 10,000). The unit is second. The
notation of > means the iteration did not converge
within the limitation for execution in the super-
computer environments.

#PEs | CG-S | MG-S | IRCG-S | NoOrt
(nprocs)
8 6,604 | 38,854 | 12,883 23
16 3,646 | 24,398 6,987 12
32 2,061 | 28,050 | 3,906 7
64 1,633 | 27,960 3,059 3
128 2,091 > 3,978 1

Table 5: The accuracy of eigenvectors calculated
with each re-orthogonalization method in the in-
verse iteration method. (HITACHI SR8000/MPP,
n = 10,000). The unit is the norm of Frobenius.

#PEs CG-S MG-S | IRCG-S | NoOrt
(nprocs)
8 6.4E-13 | 6.6E-13 | 6.4E-13 1.4
16 6.6E-13 | 6.6E-13 | 6.6E-13 1.4
32 6.8E-13 | 6.6E-13 | 6.8E-13 1.4
64 9.4E-13 | 6.6E-13 | 9.4E-13 1.4
128 1.5E-12 - 1.5E-12 1.4

If library users can specify the accuracy of eigenvectors
in this situation, i.e., less than 1.5F — 12, the system can
determine the suitable re-orthogonalization method. In this
case, CG-S was the best parameter. Consequently, BEOL
can determine the parameter of kort as CG-S in this situ-
ation, using the value of accuracy from library users. The
accuracy of eigenvectors and the code of algorithm selection
in the re-orthogonalization methods can be implemented by
the selection instruction operation in Section 3.1.

Figure 6 shows the speedup ratio compared to the case
of the normal default parameter (the MG-S method) in Ex-
periment 3.

Table 6: Speedup ratio to specified normal de-
fault parameter of the MG-S method, when li-
brary users specify the accuracy of eigenvectors as
less than 1.5F — 12 in Experiment 3. (HITACHI
SR8000/MPP)

#PEs (nprocs) | 8 16 32 64 128
Speedup 58 6.6 13.6 171 —

Figure 6 indicates that we can obtain 5.8-17.1 times speedups

in this case. This is a typical case for applying the BEOL op-
timization in FIBER. This speedup is crucial; hence, we can
conclude that the FIBER BEOL is an important function
for optimizing algorithms according to the user’s knowledge.

5. RELATED WORK

We can classify the conventional auto-tuning software into
the following three categories.

Complete Run-time Optimization Software: In this cat-
egory, the software performs the parameter adjustments at
run-time. For example, to tune computer system parameters
such as I/O buffer size, Active Harmony[12] and Autopilot[9]
can be used.

The SANS [3] project provides a framework based on run-
time optimization by a network agent!.

Complete Install-time Optimization Software: In this cat-
egory, the software performs the parameter adjustments at
their install-time. For example, PHIiPAC [2], ATLAS and
the paradigm of AEOS (Automated Empirical Optimization
of Software) [1, 13], and FFTWI[4] can automatically tune
the performance parameters of their routines when they are
installed.

For formalization of an auto-tuning facility in this cat-
egory, Naono and Yamamoto formulated the install-time
optimization in the SIMPL [8] auto-tuning software frame-
work, which is a paradigm for parallel numerical libraries.
For reducing the search time, a theory for optimal param-
eters in an eigensolver was studied by Imamura and Naono
[5].

Hybrid Install-time and Run-time Optimization Software:
In ILIB [6, 7], the facility of install-time and run-time opti-
mizations is implemented.

The concepts of the execute-time optimization layer with
the user’s knowledge, in order to improve parameter accu-
racy and to generalize auto-tuning facilities, are not clear
and rarely discussed in the conventional auto-tuning soft-
ware mentioned above. We therefore believe that BEOL in
FIBER[11] is a very new concept.

6. CONCLUSION

In this paper, we evaluated an optimization layer with
the user’s knowledge for numerical software. The original-
ity of the FIBER framework lies in its innovative optimiza-
tion layer, the BEOL (Before Execute-time Optimization
Layer). The experiment for BEOL indicated that the speed
increased 3.4 times in eigensolver parameters and 17.1 times
in the algorithm selection of orthogonalization compared to
conventional optimization layers of installation in a compu-
tation kernel for the eigensolver. In addition, BEOL can
guarantee the performance in a sense.

The key feature of the FIBER framework is how it deter-
mines the cost definition function F' according to the char-
acteristics of libraries, sub-routines, or other parts of a pro-
gram. Moreover, to extend the adaptation of auto-tuning
and to obtain high quality in the estimated parameters, a
more sophisticated method is needed. Evaluation of the cost
definition function and extending the adaptation of FIBER
will be important future work.

A parallel eigensolver, named ABCLibDRSSED, has been de-
veloped which contains a part of the FIBER BEOL facil-
ity. The source code and manual for the alpha version are
available at http://wuw.abc-1ib.org/. The ABCLibScript
language will be developed to support code generation, pa-
rameterization, and its registration for auto-tuning facilities
based on the FIBER concept, as shown in Section 3.1.

!They also provide an install-time optimization scenario [3].
However, the agent approach is basically classified as run-
time tuning, because it decides the appropriate parameters
at run-time.



Table 7: IOL and BEOL Effects on the Three Kinds of Parallel Machines for an Eigensolver. One second is
the unit for execution time.

(a) HITACHI SR8000/MPP

(a-1) Compiler Option (-opt=4)

Dim Default IOL-Estimated Parameters BEOL-Optimized Parameters BEOL Effect BEOL Effect
Parameters Time [s] (ictr,imv,iud) Time [s] (ictr,imv,iud) | (Def/BEOL) (IOL/BEOL)
Time]s] (hitk,ichit) (hitk,ichit)
512 0.607 0.588 (0,14,6)(3,3) 0.534 (0,14,14)(8,2) 1.13 1.10
5123 247 223 (0,16,16)(2,2) 195 (0,15,15)(7,1) 1.26 1.14
6123 485 370 (0,16,16)(15,1) 331 (0,15,4)(16,1) 1.46 1.11
(a-2) Compiler Option (-opt=0)
Dim. Default IOL-Estimated Parameters BEOL-Optimized Parameters BEOL Effect BEOL Effect
Parameters Time [s] (ictr,imv,iud) Time [s] (ictr,imv,iud) | (Def/BEOL) (IOL/BEOL)
Timel[s] (hitk,ichit) (hitk,ichit)
512 9.15 3.73 (0,14,6)(3,3) 3.42 (0,5,5)(16,2) 2.67 1.09
1234 102 a8 (0,13,16)(5,2) 03 (0,6,14)(5,2) 2.50 1.02
2345 731 270 (0,13,16)(5,2) 273 (0,13,14)(7,2) 2.67 0.98
(b) Fujitsu VPP800/63
(b-1) Compiler Option (-0¥5)
Dim Default IOL-Estimated Parameters BEOL-Optimized Parameters BEOL Effect BEOL Effect
Parameters Time [s] (ictr,imv,iud) Time [s] (ictr,imv,iud) | (Def/BEOL) (IOL/BEOL)
Time]s] (hitk,ichit) (hitk,ichit)
512 0.815 0.771 (1,2,1)(16,3) 0.757 (1,10,9)(16,2) 1.07 1.0l
5123 71.8 60.2 (1,16,2)(14,3) 60.3 (1,16,2)(14,1) 1.19 0.99
6123 110 92.01 (1,16,2)(14,3) 91.9 (1,16,4)(14,3) 1.19 1.00
(b-2) Compiler Option (-00)
Dim. Default IOL-Estimated Parameters BEOL-Optimized Parameters BEOL Effect BEOL Effect
Parameters Time [s] (ictr,imv,iud) Time [s] (ictr,imv,iud) | (Def/BEOL) (IOL/BEOL)
Timel[s] (hitk,ichit) (hitk,ichit)
123 0.653 0.620 (1,9,8)(14,1) 0.616 (1,9,9)(15,2) 1.06 1.00
512 204 181 (0,11,0)(12,3) 7.9 (1,10,0)(16,3) 113 101
912 107 93.9 (1,15,9)(13,3) 93.6 (1,16,9)(12,2) 1.14 1.00
(c) PC Cluster
(c-1) Compiler Option (-fast)
Dim. Default IOL-Estimated Parameters BEOL-Optimized Parameters BEOL Effect BEOL Effect
Parameters Time [s] (ictr,imv,iud) Time [s] (ictr,imv,iud) | (Def/BEOL) (IOL/BEOL)
Timel[s] (hitk,ichit) (hitk,ichit)
512 2.88 3.32 (1,10,4)(1,2) 2.68 1,5,2)(1,1) 1.07 1.00
5123 396 359 (1,5,2)(1,3) 366 (0,5,1)(1,2) 1.08 0.98
10123 2804 2497 (1,5,2)(1,3) 2526 (1,5,3)(1,2) 1.11 0.98
(c-2) Compiler Option (-00)
Dim. Default IOL-Estimated Parameters BEOL-Optimized Parameters BEOL Effect BEOL Effect
Parameters Time [s] (ictr,imv,iud) Time [s] (ictr,imv,iud) | (Def/BEOL) (IOL/BEOL)
Timel[s] (hitk,ichit) (hitk,ichit)
512 3.55 345 (0,13,11)(7,1) 331 (1,13,3)(3,1) 1.07 .04
1234 7.6 19.00 (0,13,8)(14,1) 16.7 1,5,8)(4,3) 1.05 113
2345 97.4 98.6 (1,14,15)(4,3) 845 (0,6,6)(4,3) 1.15 116




Table 8: IOL and BEOL Effects on the Three Kinds of Parallel Machines for a QR Decomposition Routine.
One second is the unit for execution time.

(a) HITACHI SR8000/MPP

(a-1) Compiler Option (-opt=4)

Dim Default IOL-Estimated  Parameters | BEOL-Optimized  Parameters | BEOL Effect BEOL Effect
Parameters Time [s] (ibl,iop,isp, Time [s] (ibl,iop,isp, | (Def/BEOL) (IOL/BEOL)
Time[s] io0,is0) i0o,is0)
512 0.217 0.290 (6,4,8,48) 0.171 (8,2,2,4.4) 1.26 1.69
5123 391 149 (16,4,8,4,8) 146 (8,4,1,4,4) 2.67 1.02
6123 762 270 (16,4,8,4,8) 276 (8,2,5,2,8) 2.76 0.97
(a-2) Compiler Option (-opt=0)
Dim. Default IOL-Estimated  Parameters | BEOL-Optimized  Parameters | BEOL Effect BEOL Effect
Parameters Time [s] (ibl,iop,isp, Time [s] (ibl,iop,isp, | (Def/BEOL) (IOL/BEOL)
Timel[s] ioo,iso) ioo,iso)
512 2.42 1.05 (8,4,8,48) 0.982 (8,1,3,48) .45 1.06
1234 33.9 15.2 (8,4,8,4,8) 16.9 (8,2,3,3,8) 2.00 0.89
2345 240 119 (16,4,8,4,8) 114 (8,2,5,4,8) 2.10 1.04
(b) Fujitsu VPP800/63
(b-1) Compiler Option (-0¥5)
Dim Default IOL-Estimated  Parameters | BEOL-Optimized  Parameters | BEOL Effect BEOL Effect
Parameters Time [s] (ibl,iop,isp, Time [s] (ibl,iop,isp, | (Def/BEOL) (IOL/BEOL)
Time[s] io0,is0) i0o,is0)
512 0.061 0.026 (16,4,8,4,8) 0.026 (8,1,5,4,8) 2.34 1.00
5123 313 10.0 (8,4.8.48) 182 (16,4,5,1,16) 171 1.04
6123 51.4 30.6 (16,4,8,4,8) 30.2 (8,1,1,3,8) 1.70 1.01
(b-2) Compiler Option (-00)
Dim. Default IOL-Estimated  Parameters | BEOL-Optimized  Parameters | BEOL Effect BEOL Effect
Parameters Time [s] (ibl,iop,isp, Time [s] (ibl,iop,isp, | (Def/BEOL) (IOL/BEOL)
Timel[s] ioo,is0) ioo,is0)
123 0.292 0.290 (3,4,8,48) 0.152 (8,1,3,3.4) 1.02 1.90
512 19.6 7.11 (8,4,8,4,8) 7.05 (8,1,3,4,8) 2.78 1.00
912 110 106 (8,4,8,43) 105 (8,1,4,43) 2.71 1.00
(c) PC Cluster
(c-1) Compiler Option (-fast)
Dim. Default IOL-Estimated  Parameters | BEOL-Optimized Parameters | BEOL Effect BEOL Effect
Parameters Time [] (ibl,iop,isp, Time [s] (ibl,iop,isp, | (Def/BEOL) (IOL/BEOL)
Timel[s] io0,is0) ioo,iso)
512 0.520 0.590 (6,4,8,4,8) 0.466 (3,1,2,1,3) T.11 1.26
5123 261 151 (8,48,438) 152 (8,3,4,4,38) 1.71 0.99
10123 2017 2079 (8,4,8,4,8) 1320 (16,4,16,3,4) 1.52 1.57
(c-2) Compiler Option (-00)
Dim. Default IOL-Estimated  Parameters | BEOL-Optimized  Parameters | BEOL Effect BEOL Effect
Parameters Time [s] (ibl,iop,isp, Time [s] (ibl,iop,isp, | (Def/BEOL) (IOL/BEOL)
Timel[s] ioo,is0) ioo,is0)
512 1.1l 0.523 (16,4,8,4,8) 0.532 (16,2,3,4,16) 2.08 0.98
1234 12.7 3.60 (8,4,8,4,8) 3.59 (8,2,6,4,8) 3.53 1.00
2345 86.0 87.3 (6,4,8,4,8) 25.4 (8,3,1,4,8) 3.38 3.43
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