ABCLibScript: A Directive to Support Specification of An
Auto-tuning Facility for Numerical Software *

Takahiro Kagiri, Kenji Kise, Hiroki Honda and Toshitsugu Yuba
Graduate School of Information Systems,
The University of Electro-Communications
/ Japan Science and Technology Agency, PRESTO
Phone: +81-424-43-5642 FAX: 481-424-43-5644
E-mail: katagiri@is.uec.ac.jp

Abstract

In this paper, we describe the design and implementation of ABCLibScript, which is a di-
rective that supports the addition of an auto-tuning facility based on the FIBER framework.
ABCLibScript limits the function of auto-tuning to numerical computations. For example,
the block length adjustment for blocked algorithms, loop unrolling depth adjustment and al-
gorithm selection are crucial functions in ABCLibScript. To establish these three particular
functions, we make three kinds of instruction operators, variable, unroll, and select, respec-
tively. We focus on the reduction and support of development for auto-tuning software to
innovate the limited functions of ABCLibScript. As a result of our performance evaluation,
we showed that a non-expert user obtained a maximum speedup of 4.3 times by applying
ABCLibScript to a program compared to a program without ABCLibScript.

Keywords: ABCLibScript, Directive, Software Auto-Tuning, FIBER, Pre-processor

1 Introduction

Recently, many numerical libraries with an “auto-tuning facility” have been developed, e.g.,
PHIPAC [2], ATLAS [1], FFTW [6]. We refer to a library with an auto-tuning facility as SATF
(Software with Auto-Tuning Facility). The early research on these libraries established the
effectiveness of SATF [11].

Although SATF is effective from the viewpoint of performance, we are currently developing
a “specialized” auto-tuning facility. For example, direct solvers, iterative solvers, dense solvers,
and sparse solvers are included in numerical software packages, but we have no way to adapt a

single auto-tuning facility to all of these solvers. For this reason, we have developed a directive,

“This paper was submitted to IS Technical Report UEC-IS-2004-7 in the Graduate School of Information
Systems, the University of Electro-Communications in September 30th of 2004.

named ABCLibScript, which can support the addition of an auto-tuning facility. The auto-
tuning facility is restricted to the function of numerical processing to reduce the complexity of
the ABCLibScript implementation.

The organization of this paper is as follows. Section 2 explains the FIBER framework, which
is the base technology of the auto-tuning used in ABCLibScript. In Section 3, the development
policy for ABCLibScript is described. Section 4 describes the implementation details of AB-
CLibScript, especially the ABCLibScript API (application programming interface). Section 5
provides some programming examples using ABCLibScript. Finally, Section 6 summarizes the

observations of this study.

2 Outline of Auto-tuning with the FIBER Framework

FIBER, which is the framework of auto-tuning, was created to establish wide applicability of
SATFs [16, 15, 9]. For instance, FIBER allows us to increase the number of adaptable soft-
ware packages, and achieves high accuracy for estimated parameters. To establish these goals,
FIBER has three kinds of timing for parameter optimization: (1) IOL(Install-time Optimization
Layer), which is performed when the software is installed, (2) BEOL(Before Execute-time Op-
timization Layer), which is performed when the end-users fix the special parameters defined by
the software developers (e.g., the problem size to execute), and (8) ROL(Run-time Optimization
Layer), which is performed when the target processes run. The software framework to establish
this approach is called FIBER (Framework of Install-time, Before Ezxecute-time, and Run-time

optimization layers.)

2.1 Two Kinds of Users and Software Organization

The main target process of FIBER is numerical processing, thus the users are defined as follows:
e Software developer
e Software user (end-user)

The software developer is a user who adds the auto-tuning facility to their own software by
using the instruction operations of ABCLibScript, which are provided by the FIBER toolkit
developer. On the other hand, the software user (end-user) is a user who uses the software with
the auto-tuning facility which was developed by the software developer.

Figure 1 shows the process flow in FIBER from the viewpoints of the above two kinds of
users. Figure 1 indicates that the process flow is different for the two users. We explain the

usage scenario for FIBER in the following.

(1) Software Developer Phase

Parameter
Software Developer Specification Optimization
Component
!ABCLibs$ install unroll(j) region start
do i=1,n .
4o j21,n Automatically AT-Region
do k=1,n Generated s
S o . . Selection
a(i,j)=a(i,j)+b(i, k) *c(k,3) —
enddo enddo enddo Component
|ABCLib$ install unroll(j) region end
s AT-Region Library
Component
‘#1”#2 ”#3 I
(2) Software User (End-user) Phase

(2a) Install-time Auto-tuning Mode
Machine Parameters

Automat Tuned

‘ CacheSIZE 64k

(This process is descr

‘ Detected

ically | parameter

Optimization

ibed Component

Information | Parameter
Information|
File

by software developers)
(2b) Before Execute-time Auto-tuning Mode

End-user Specification Tuned

Information

_ Parameter Parameter
‘ N_TUNESIZE = 1234 ‘ =) Optimization Information
(Parameters specified by Component —- | F11e
software developers)

(2c)Run-time Auto-tuning Mode

| FIBER Interface’

1 Specificatiorl f
H“\k

Tuned
Informatio
~—

100MB Parameter

Parameter H
Information|:
File

1 Optimization

1

1

1
H |
H |
ﬂAlgorithm Parametersj//}' Component
ﬂ ‘ = band ‘ Tuned

1

-

I Optimal Code

i I Information
n

AT-region
Selection
Component

Mat Type 1
- 1 Information

Selection
History

Run-time Information

-~y :
“eu s, Selection
AT-Region #3 I”,j

EAT—Region Library
: Component

AT-Region #1 AT-Region #2

Figure 1: Process flow in FIBER.

e Software Developer Phase:
Software developers perform the following processes to generate the auto-tuning facility in
the FIBER framework.

(1a) The software developer, who wants to add the auto-tuning facility to their software,
writes the operations in their source programs using the language provided by the
FIBER toolkit developer for the target regions, i.e., computation kernels, in the
numerical computation routines. We call this region an AT region.

(1Ib) The software developer applies a pre-process tool which is provided by the FIBER

toolkit developer. The pre-process tool generates new source codes with the auto-

tuning facility. The automatically generated auto-tuning facility contains three com-

ponents: (i) Parameter Optimization Component, (ii) AT-Region Selection Compo-
nent, and (iii) AT-Region Library Component. These components are explained in

the section below.

(Lc) The software developer opens the source codes to the end-users as a library. Or,
the software developer compiles the source codes with a compiler, and the compiled

object code is also opened to the end-users.

e Software User (End-user) Phase:
The end-user uses the auto-tuning software opened by the software developer. The follow-
ing three optimization modes are performed to obtain high performance using the three

kinds of timing.

(2a) Install-time Optimization Mode: This mode is performed when the software is in-
stalled into the end-user’s environment. The install-time optimizer tries to find the
hardware parameters, e.g., cache sizes and message communication latency, to estab-
lish efficient implementations corresponding to the end-user’s machine environments.
The end-user is unaware of this optimization since the optimization can be totally

hidden in the installation or compilation processes for the target software.

(2b) Before Execute-time Optimization Mode: This mode is performed after special pa-
rameters are fixed, based on the end-user’s knowledge. For example, the problem
size to execute their software is a special parameter because the system cannot know
this value in advance. By using the fixed parameter information, optimization is
performed in this mode. This optimization also includes the selection of the best al-
gorithm. Compilers cannot perform such an algorithm selection, because of the lack

of knowledge of the end-user’s algorithms.

(2¢) Run-time Optimization Mode: This mode is performed when the target auto-tuning
regions are executed or called. The run-time optimizer tries to obtain run-time in-
formation, e.g., input data characteristics such as the band matrix for numerical
computation, the load of the machines, and the current communication performance
(such as the communication bandwidth for a GRID environment.) Since the run-time
optimization optimizes the target regions with “dynamic” information, it can set the

best parameter which cannot be optimized in the first two optimization modes.

2.2 Components
The FIBER framework supports the following components:

e Parameter Optimization Component: This component optimizes developer-specified

library parameters in the PTL (Parameter Tuning Layer.) There are three different kinds

of timing for the optimizations (install-time, before execute-time, and run-time.)

e AT-Region Selection Component: This component selects the best auto-tuning re-
gion, taking into account information from the parameter information file and the run-time

optimizer.

e AT-Region Library Component: This component is automatically generated accord-
ing to the pre-process specifications from the software developer. The commands of this
pre-process are provided by the FIBER toolkit developer. The regions of auto-tuning (AT-
Regions) are specified by the software developer through ABCLibScript. According to the
software developer’s instructions, the specified AT-regions are separated and formed into

several components. The aggregation of these components forms the AT-Region Library.

3 Design of ABCLibScript

3.1 Design Policy

The design of ABCLibScript is based on the following four design policies.

1. Easy Specification: The specification is dedicated for numerical processing. Hence, the

provided functions are limited.

2. Non-disturbance for Original Program Execution: The software developer specifies the
operations using the directives in the original program. Hence, the original program exe-

cution is not disturbed.

3. Generation of High-readability Codes: The pre-processor provided can generate high-

readability codes according to the directive specified by the software developer.

4. Simplification of the Auto-tuning Process: Using the concept of two kinds of system param-
eters, which are PP (Performance Parameter) and BP (Basic Parameter), the auto-tuning

process is simplified.

ABCLibScript has the following limited instruction operators to dedicate to the numerical

processing.
e Unroll: Loop unrolling depth adjustment to loop unrolled codes.
e Variable: Blocking length adjustment to blocked algorithms.

e Select: Algorithm selection based on the user’s knowledge.

The ABCLibScript toolkit developer supplies a pre-processor, which can interpret the direc-
tives specified by the software developer. In addition, it can generate codes which the software
developer can easily read, because the code is written in the computer language used by the
software developer. For this reason, the software developer can manage the auto-generated
codes. This approach also has another advantage. Since the auto-generated codes have high-
readability, the software developer can find and understand the auto-tuning process. The policy
of ABCLibScript, hence, is based on a while box approach.

ABCLibScript defines the auto-tuning according to the concept of two kinds of system pa-
rameters, PP and BP. The system parameters of PP are determined to minimize the Cost
Definition Function F', which is defined as the cost in the target AT region when the system
parameters of BP are fixed (See [16, 15, 9].) We can also say that ABCLibScript is a directive
which can specify the auto-tuning facility to fix the system parameters PP and BP defined
by the software developer. By using this concept, specification makes the auto-tuning process

simple.

3.2 Specification Format
3.2.1 Specification of Performance Parameters for the Software Developer

We have explained that the software developer should define the performance parameters (P Ps),
the basic parameters (BPs), and auto-tuning regions (AT regions) in the source program* .
The end-user can define the basic parameter BP in the Before Execute-time Optimization.
We also can say that the auto-tuning in FIBER is a process that estimates the best PP parameter
automatically, based on a BP fixed by the software developer or end-user, or both.
An overview of the specification is listed in Figure 2. The line !ABCLib$ specifies ABCLib-

Script for auto-tuning in the source program.

IABCLib$ (Auto-tuning Type) (Function Name) (Target Variables) region start
IABCLib$ (Details of Function)sub region start
AT Region
IABCLib$ (Details of Function)sub region end
'ABCLib$ (Auto-tuning Type) (Function Name) (Target Variables) region end

Figure 2: Auto-tuning Specification Format in ABCLibScript.

The (Auto-tuning Type) and (Function Name) in Figure 2 are called instruction operators.

* For the basic parameter BP, the variable n for program size is a default parameter in this system. If you
want to add the basic parameter, ABCLib_BPset, which is an API for the software developer, can be used in the

ABCLibScript specification. The explanation of this API is shown later in this paper.

The instruction operator (Auto-tung Type) can specify the three kinds of timing—install-time
optimization (install), before execute-time optimization (static), and run-time optimization
(dynamic). The way to process the target code and the details for the auto-tuning method can

be specified by the instruction operator (Function Name).

3.2.2 Instruction Operators and Co-operators

The instruction operators are listed in Figure 3, and the instruction co-operators are listed in

Figure 4.

e (Auto-tuning Type) ::= (install | static | dynamic | (Formula))
install : Specifying Install-time Auto-tuning.
static : Specifying Before Execute-time Auto-tuning.
dynamic :Specifying Run-time Auto-tuning.
(Formula) ::= Formulas according to computer language grammar

for target code.

e (Function Name) ::= (define | variable | select | unroll)
define : Specify definition of parameters.
variable : Specify variable parameters.

select : Specify selection among AT regions.

unroll : Specify loop unrolling.

Figure 3: Instruction operations in ABCLibScript

3.3 Target Computer Language

By nature, the ABCLibScript specification does not depend on the computer language which
the software developer used to write the program code. However, for implementation of the
pre-processor of the ABCLibScript directives, a target language should be chosen.

The numerical software is the target application in this directive. Fortran90 and MPI-1
(Message Passing Interface-1), hence, are used in the target application program. We state
the ABCLibScript specification, which takes into account the target computer language, as
ABCLibScript(Fortran90, M PI — 1).

3.4 How To Use the Pre-processor

The FIBER toolkit developer supplies a pre-processor, which can interpret the directive by
ABCLibScript and generate codes with the auto-tuning facility. The name of the pre-processor
is ABCLibCodeGen.

e name (Characters) : Describe the name of AT region. (Available in all functions)
e parameter ((Property Specification) (Variable Name), [(Property Specification) (Variable Name}, ...])
: Specify output variables to parameter information file, or input variables from parameter information file.
Or, declaring basic parameters.
(Property Specification) ::= [in | out | bp |
in : input parameters, which are defined in outer part and referred in this AT Region.
out : output parameters, which are defined in this AT region.
bp : Basic Parameters. (Available in all functions)
e select sub region(start | end) : Specify selection process. (when specifying the select operator)
e according ((Condition Formulas) | estimated (Formulas)) : Select the AT region based on the following conditions.
(Condition Formulas) ::= [(min (Variable Name) | condition (Conditions)) (Connection Operator)]
(Connection Operator) ::= [.and. | .or. | (Condition Formulas)
estimated (Formulas): Select the best process based on the cost formula defined by software developers.
(when specifying select operator)
e varied ({ Variable Name) [,(Variable Name),... 1) from X to Y : Specify the range of variable (from X to Y.)
(when specifying the functions of variable and unroll)
e fitting (Method) sampled (Range) : Specify the method to estimate parameters.
(Method) ::= [least-squares (Order) | user-defined (Formulas) | auto]
least-squares : Use the least-squares method with linear polynomial formula.
the order is defined in (Order).
user-defined : Use the least-squares method with the software developer defined formula.
auto : Determine the parameter estimation method by the system.
(range) ::= [(Values) | auto | : Specify the regions to use parameter estimation.
If you specify (Method) as auto, you can omit this.
(Values): Specify values for parameters.
auto : Determine sampling range automatically, when you do not specify the operator of fitting.
The optimal values are specified in which all regions defined the operator of varied are searched.
(when specifying functions of variable and unroll)
e pripro sub region (start | end): Describe pre-process before the AT region is called. (Available in all functions)
e postpro sub region (start | end): Describe post-process after the AT region is called. (Available in all functions)
e debug ((Variables),[(Variables)]) : Specify debug variables when the AT region runs. (Available in all functions)
(Variables) ::= [bp | pp | (Arbitrary Values)]
bp : print information of basic parameters; pp : print information of performance parameters;

(Arbitrary Values) : Print information for the described variables;

Figure 4: Instruction co-operations of ABCLibScript.

The following command is performed to generate a parallel numerical computation program
with the auto-tuning facility in the program (test.f) based on the specification of
ABCLibScript(Fortran90, MPI — 1).

>ABCLibCodeGen test.f

The following run-time options can be specified in the pre-processor of ABCLibCodeGen.

[Run-time option| -debug
OFF: Do not generate debugging codes. (Default)

ON: Generate debugging codes with level x, which can be specified by the system variable
ABCLib_DEBUG.

[Run-time option| -visualization

OFF: Do not output to an auto-tuning log file (Default).
ON: Output to an auto-tuning log file

[Example] > ABCLibCodeGen -debug ON -visualization ON test.f

Generate the codes with the auto-tuning facility in the program test.f. The generated codes
contain a debugging code and a routine to output an auto-tuning log file. By using a visualizer,
which is now being developed, the process of auto-tuning will be visualized with the output log
file.

4 Implementation of ABCLibScript

4.1 ABCLibScript APIs

ABCLibScript has APIs to support the detailed specification of auto-tuning with directives. The
main goal of the APIs is to support detailed software developer descriptions, but end-users do
not use all the functions of the APIs' .

To execute auto-tuning, the following APT is specified.

‘ [API 1] ABCLib_ATexec (ABCLib_ATkinds, ABCLib_ATroutines)

The routine of ABCLib_ATexec executes the auto-tuning specified by ABCLib_ATkind to the
target regions specified by ABCLib_ATroutines. The argument of ABCLib_ATkinds specifies the
type of auto-tuning. The following four kinds of constant values, which are defined in the header

file ABCLibScript.h, can be specified.

ABCLib_INSTALL: Specify the Install-time Auto-tuning;

ABCLib_STATIC: Specify the Before Execute-time Auto-tuning;

ABCLib_DYNAMIC: Specify the Run-time Auto-tuning;

ABCLib_ALL: Specify all auto-tuning;

The argument of ABCLib_ATroutines specifies the target AT regions. This argument is
specified with the arbitrary AT regions, which are named by the software developer, or with the
variables ABCLib_ATname defined in the header file ABCLibScript.h. The common variables are

shown as follows:

e ABCLib_AllRoutines: For all routines;

t Basically, an end-user does not want to use the API functions because they only want to use the software
opened by the software developer. The end-user should only use the API when performing a before execute-time
optimization in FIBER.

e ABCLib_InstllRoutines: For Install-time Auto-tuning;

e ABCLib_StaticRoutines: For Before Execute-time Auto-tuning;

e ABCLib_DynamicRoutines: For Run-time Auto-tuning;

[Example] 'ABCLib$ call ABCLib_ATexec (ABCLib_INSTALL, ABCLib_InstallRoutines)

: Install-time auto-tuning is performed in all of the AT regions specified by the install-time auto-

tuning.

| [API 2] ABCLib ATset (ABCLib ATkinds, ABCLib ATroutines) |
The routine ABCLib_ATset sets the auto-tuning type described in ABCLib_ATkind to the AT

regions specified in ABCLib_ATroutines.

| [APT 3] ABCLib ATdel (ABCLib ATroutines, DelName) |

The routine of ABCLib_ATdel deletes the AT regions specified by DelName in ABCLib_ATroutines,
which is a list of registered AT region names. The argument of DelName specifies the AT region
name. The AT region name is also specified in the instruction co-operator of name in each AT
region.

[Example] 'ABCLib$ call ABCLib_ATdel(ABCLib_InstallRoutines,"MyMatMul") : The

AT region named ”MyMatMul” is deleted as a candidate of the install-time auto-tuning.

‘ [API 4] ABCLib_ATInstallInit (ABCLib_InstallRoutines)

The routine of ABCLib_ATInstallInit sets a flag for the execution of install-time auto-

tuning as not-executed. The target AT region is specified in ABCLib_InstallRoutines.

| [APT 5] ABCLib BPset (BPvallame)

The routine of ABCLib_BPset sets a new basic parameter (BP) specified in the argument of
BPvalName.
[Example] 'ABCLib$ call ABCLib_BPset("nprocs")

: The variable of nprocs is set as a new basic parameter (BP).

[[APT 6] ABCLib BPsetName (Kind, BPvallame, Name) |

The routine of ABCLib_BPsetName sets a variable name, which is specified in the argument
of Name. The target variable is a basic parameter specified in BPvalName for fixing the basic

parameter BP when auto-tuning is performed. For the argument of Kind, the meaning is

e Kind ::= [STARTTUNESIZE | ENDTUNESIZE | SAMPDIST |,

10

where STATTTUNESIZE : Start point information of sampling for basic parameter of BPvalName;
ENDTUNESIZE: End point information of sampling for basic parameter of BPvalName; SAMPDIST:
Stride information of sampling for basic parameter of BPvalName;
[Example] 'ABCLib$ call ABCLib_BPsetName ("STARTTUNESIZE", "nprocs",
'ABCLib$ & "ABCLib_NprocsStartSize")
: The variable for the start sampling point in auto-tuning for the basic parameter of nprocs

is named ABCLib_NprocsStartSize.

‘ [API 7] ABCLib BPsetCDF (BPvalName, CDFKind)

The routine of ABCLib_BPsetCDF sets the estimation method for the parameter values, except
for the sampling points in the basic parameter specified in the argument of BPvalName for the
method specified in the argument of CDFKind. The methods specified in the argument of CDFKind

are
e CDFKind ::= [least-squares (Order) | user-defined (Formula) | auto |,

where least-squares (Order) specifies the least-squares method using a linear polynomial in
which (Order) specifies the order of the linear polynomial; user-defined (Formula) specifies
the least-squares method in which the formula is defined by the user; auto specifies an estimation
method that the system selects automatically;

The default process is the same method defined in the target AT region. If the user does not
specify the estimation method even in the AT region, a linear polynomial formula of the third
order is selected.

[Example] 'ABCLib$ call ABCLib_BPsetCFD("nprocs", "least-squares 5")

: The estimation method for the basic parameter nprocs is set as the least-squares method

of a linear polynomial formula of the fifth order.

4.2 Examples of API Descriptions

In this section, we show examples of an API for ABCLibScript. In the following example,
the software developer has a routine named EigenSolver for eigenvalue computation. The soft-
ware developer can develop the new routine foo, which is an auto-tuning facility added to the

EigenSolver routine, by using the API.

subroutine foo(...)

include (ABCLibScript.h)

C === Initialization and registration of AT regioms.

IABCLib$ call ABCLib_ATset (ABCLib_ALL,ABCLib_AllRoutines)

11

IABCLib$ call ABCLib_ATset (ABCLib_INSTALL, ABCLib_InstallRoutines)
IABCLib$ call ABCLib_ATset (ABCLib_STATIC, ABCLib_StaticRoutines)
IABCLib$ call ABCLib_ATset (ABCLib_DYNAMIC, ABCLib_DynamicRoutines)

C === Perform Install-time Optimization.
C (The following is written by the software developer.)
C !Only one time is admitted in the while process.

IABCLib$ call ABCLib_ATexec (ABCLib_INSTALL, ABCLib_InstallRoutines)
C ===0Only Install-time Optimization is done.

'ABCLib$ call EigenSolver(...)

C === The execution of Run-time Optimization is permitted.

C (The following is written by the software developer.)

C 'At this time, the optimization is not executed.

C When the target routine is called, the AT regions are optimized.
IABCLib$ call ABCLib_ATexec (ABCLib_DYNAMIC, ABCLib_DynamicRutines)

C === When the following routine is called, Run-time Optimization is done.
C (So, the Install-time, Before Execute-time (by the end-user),

C and Run-time Optimizations are done in this routine.)

'ABCLib$ call EigenSolver(...)

return

end

The routine pooh, which is written by the end-user to use the Before Execute-time Optimiza-

tion defined by the software developer, is described as follows using the API of ABCLibScript.

subroutine pooh(...)

include (ABCLibScript.h)

C === Perform Before Execute-time Optimization.

C (The following is written by the end-user.)

C !The optimization is done this time.

C ===Fix BP values defined by software developer.
N_TUNESIZE_START=1234
N_TUNESIZE_END=1234
call ABCLib_ATexec (ABCLib_STATIC, ABCLib_StaticRoutines)

C ===Install-time and Before Execute-time Optimizations are done.

call EigenSolver(...)

12

return

end

The example of the routine pooh indicates that the description of Before Execute-time Opti-
mization is difficult for end-users. To reduce the work, a GUI (graphic user interface) is needed

to add the function automatically.

5 Programming Examples Using ABCLibScript

The following section shows programming examples using ABCLibScript and written by the

software developer.

5.1 Install-time Optimization
5.1.1 A Matrix-Matrix Multiplication Code

The following Programming Example 1 shows a program for matrix-matrix multiplication, which
is applied in the adjustment function for unrolling depth in the install-time optimization.
[Programming Example 1]

Unrolling depth adjustment for matrix-matrix multiplication code.

IABCLib$ install unroll (i) region start
'ABCLib$ name MyMatMul
IABCLib$ varied (i) from 1 to 16
'ABCLib$ fitting least-squares 5
'ABCLib$ & sampled (1-5, 8, 16)
do i=1, n
do j=1, n
dal=A(i,j)
do k=1, n
dc=C(k,j)
dal=dal+B(i,k)*dc
enddo
A(i,j)=dal
enddo
enddo

'ABCLib$ install unroll (i) region end

13

In Programming Example 1, the default basic parameter BP is the variable n, which specifies
the matrix dimension, because the software developer does not specify special variables for the
basic parameter.

Since this example uses the instruction operator unroll, and specifies the loop variable ¢, the
loop unrolling depth of the outer loop ¢ is chosen as the performance parameter PP. By using
the instruction co-operator varied, the range for the depth is defined from 1 to 16. The cost
definition function for the execution time of the target AT region for optimizing is a fifth-order
linear polynomial, which is defined by the co-operator fitting in this example.

In the auto-tuning system, the best values for the parameters of PP are estimated by fixing
the parameters of BP, which can be specified by using the APIL. For the parameters of PP
in this example, sampling points, which are equal to the depth of unrolling to fix the BPs,
are defined by the co-operator sampled. In this example, the execution time from the first to
the fifth, eighth, and sixteenth unrolling depths are measured. Then, based on the measured
data, the coefficients of the fifth-order linear polynomial formula are determined to estimate
the values for PP. The least-squares method is used in this estimation. (Also, the co-operator

least-squares defines this.)

5.1.2 A Cache Blocking Code

Programming Example 2 shows a typical code for a block length-adjustment function for cache
blocking implementation. A cache blocking algorithm is used in the kernel routine of this
example.

[Programming Example 2] Adjustment of blocking length.

'ABCLib$ install variable (MB) region start
IABCLib$ name BlkMatMal
IABCLib$ varied (MB) from 1 to 64
do i=1, n, MB
call MyBlkMatVec(A,B,C,n,i)
enddo

'ABCLib$ install variable (MB) region end

In Programming Example 2, the performance parameter of PP is defined as the variable of
MB for block length by using the co-operator of variable. The range of the variable MB is from
1 to 64, and this is defined in the co-operator of varied.

5.2 Before Execute-time Optimization

Programming Example 3 is a program using an algorithm selection operation. The cost definition

functions specified by the software developer are used as the criteria of the selection.

14

[Programming Example 3]

Algorithm selection based on the cost definition functions defined by the software developer.

IABCLib$ static select region start

IABCLib$ name TestSelect

IABCLib$ parameter (in CacheS,in NB,in NPrc)

IABCLib$ select sub region start

IABCLib$ according to estimated (2.0d0*CacheS*NB)/(3.0d0*NPrc)
AT Region 1

'ABCLib$ select sub region end

IABCLib$ select sub region start

IABCLib$ according to estimated (4.0d0*CacheS*dlog(NB))/(2.0d0*NPrc)
AT Region 2

IABCLib$ select sub region end

IABCLib$ static select region end

In Programming Example 3, the selection of an algorithm is performed in the Before Execute-
time Optimization. The selection information for AT regions 1 and 2 is parameterized as a
performance parameter of PP.

The cost definition functions specified by the software developer are defined using the co-
operator of according estimated. In this example, the floating point variables of CacheS, NB,
and NPrc, which are defined in the Install-time optimization, are referenced. The cost of AT
region 1 is estimated as (2.0d0 x CacheS * NB)/(3.0d0 * N Prc), and the cost of AT region 2 is
estimated as (4.0d0 * CacheS * dlog(N B))/(2.0d0 = N Prc).

The evaluation of these costs is done in the Before Execute-time optimization, and then the

AT region to be executed is selected in the Run-time optimization.

5.3 Run-time Optimization

Programming Example 4 shows an example for the run-time selection of AT regions, which
references the variables eps and iter, which are defined in the AT regions at run-time. In this
case, the best AT region which is selected minimizes the variable eps within iter < 5. This
example is a typical case for adapting ABCLibScript to select pre-conditioners automatically
for iterative methods.

[Program Example 4] Selection of pre-conditioners for iterative methods at run-time.

IABCLib$ dynamic select (eps,iter) region start
'ABCLib$ name PricondSelect

IABCLib$ parameter (in eps, in iter)

15

'ABCLib$ according to min (eps) .and. condition (iter<5)
IABCLib$ select sub region start

AT Region 1 (Pre-conditioner 1)

eps = ...
'ABCLib$ select sub region end
IABCLib$ select sub region start

AT Region 2 (Pre-conditioner 2)

eps = ...
'ABCLib$ select sub region end
'ABCLib$ dynamic select (eps,iter) region end

In Programming Example 4, the best algorithm is selected based on the floating variables
eps and iter at run-time. As a performance parameter of PP, selection information for AT
regions 1 and 2 is parameterized.

The cost definition function from the software developer is defined by referring to the values
of the variables eps and iter, which are defined before the target AT regions run. To perform
this selection, the values of eps are stored when the value of iter is less than 5 in each AT region.

Then, if the value of iter equals 5, the minimal value is searched to select the best AT region.

6 A Test of the Pre-processor

Generally speaking, evaluating the usability of computer language is very difficult. Hence,
evaluating the usability for all functions of ABCLibScript is an unrealistic task. In this section,

we will evaluate limited functions of ABCLibScript.

6.1 Test for Auto-Generated Codes

We check the advantage of auto-generation for an auto-tuning facility by using ABCLibScript.

This shows the advantage of automation for auto-tuning compared to programming by hand.

6.1.1 Computer Environment for the Test

We use the following computer environment in this test.
e CPU: Pentium4 (2.4 GHz)
e Memory: 256 MByte

e OS: Linux RedHat 8

16

e Compiler: PGI Compiler Version 4.0-2
e Compiler Option: -O0

e MPI: MPICH 1.2.1

The target process is shown as follows.

Auto-tuning Timing: Install-time

Unrolling Depth Specification: from 1 to 64 by using the instruction operator unroll in
ABCLibScript.

Target AT Region Code: the outer loop (i-loop), the second loop (j-loop), and the inner

loop (k-loop) for a matrix-matrix multiplication code.

e Dimension of the matrix: 500

6.1.2 The Test Code

The following code is used in this test.

[Test Code 1] A matrix-matrix multiplication code:

program main

include ’ABCLibScript.h’

integer iauto

integer N

parameter (N=500)

real*8 A(N,N), B(N,N), C(N,N)
c === MPI Init.

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,
& myid, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,

& nprocs, ierr)

c
IABCLib$ call ABCLib_ATset (ABCLib_ALL,
IABCLib$& ABCLib_AllRoutines)

IABCLib$ call ABCLib_ATset (ABCLib_INSTALL,
IABCLib$& ABCLib_InstallRoutines)

17

IABCLib$ call ABCLib_ATset (ABCLib_STATIC,
'ABCLib$& ABCLib_StaticRoutines)
IABCLib$ call ABCLib_ATset (ABCLib_DYNAMIC,
IABCLib$& ABCLib_DynamicRoutines)

iauto =1

in = 350

if (iauto .eq. 1) then
IABCLib$ ABCLib_NUMPROCS = 4
IABCLib$ ABCLib_STARTTUNESIZE = 100
IABCLib$ ABCLib_ENDTUNESIZE = 500
IABCLib$ ABCLib_SAMPDIST = 100
IABCLib$ call ABCLib_ATexec (ABCLib_INSTALL,
IABCLib$& ABCLib_InstallRoutines)

else
IABCLib$ ABCLib_DEBUG = 1

call MatMul(A, B, C, in)
endif

c ===== MPI finazize

call MPI_FINALIZE(ierr)

stop

end

subroutine MatMul(A, B, C, N)
integer N
real*8 A(N,N), B(N,N), C(N,N)
include ’ABCLibScript.h’
real*8 dal, da2
real*8 dc
do i=1, N

do j=1, N

A(i,j) = 0.0d0

enddo
enddo
do i=1, N

do j=1, N

18

B(j,1)
c(j,1)

enddo

dble(ixj)
1.0d0/dble(ix*j)

enddo
IABCLib$ install unroll (i) region start
IABCLib$ name MyMatMul
IABCLib$ varied (i) from 1 to 64
IABCLib$ debug (pp)
do i=1, N
do j=1, N
dal = A(i,j)
do k=1, N
dc = C(k,j)
dal = dal + B(i,k) * dc
enddo
A(i,j) = dal
enddo
enddo
'ABCLib$ install unroll (i) region end
return

end

6.1.3 Result

Test Code 1 was processed, then a code with the auto-tuning facility of FIBER was automatically
generated using the pre-processor of ABCLibCodeGen. Fortran90 and MPI-1 were used in the
automatically generated code.

We also checked the pre-processing by taking into account the target loops — the i-loop,
j-loop and k-loop were unrolled in this test.

Figure 5 shows the tuning results in the FIBER install-time auto-tuning for the unrolling.

From the results for the install-time auto-tuning of Figure 5, we found the following facts:
e For i-loop unrolling: The best depth was 50, and speedup was 3.1 times.
e For j-loop unrolling: The best depth was 25, and speedup was 2.1 times.
e For k-loop unrolling: The best depth was 50, and speedup was 1.1 times.

The speedups were calculated between the execution time with the depth 1 unrolling and the

best depth after that.

19

unroll i-loop —>%—
unroll j-loop -+
unroll k-loop -%-

N

=
©

Time in Seconds
= H
O)

=
N

=

0.6 i i i i i
1 10 20 30 40 50 60 64
Unrolling Depth

Figure 5: Auto-tuning Results for Test Code 1 (matrix-matrix multiplication.)

We found other interesting results. There were unstable phenomena in the depths of 36
and 37 for the j-loop, the depths of 51-53 for the i-loop. We think that this is caused by
compiler optimization or unstable memory access, but a detailed analysis is needed. However,
the important point of this test is that it is hard to find such phenomena with coding by
hand, since the implementation of unrolling from 1 to 64 depths gives the software developer an
enormous load. The work is a quite quick for the pre-processor.

Thus, we can check the execution and show the benefit for the directive of ABCLibScript
for the auto-tuning facility of FIBER.

6.2 Test for Non-expert Users

Next, we evaluated the effect of using ABCLibScript with non-expert users.

6.2.1 Overview of the Experiment

The subjects have programming skills in C language, but have no experience using Fortran

language. This experiment was done in the following two phases.

20

e Phase 1: Write matrix-matrix multiplication code using Fortran. Then, tune it to maxi-

mize its performance.

e Phase 2: Add ABCLibScript directives to the programs.

The span of Phase 1 was 1 week, and the span of Phase 2 was 1 day. The experiment was
done from August 13th to August 20th of 2004 for Phase 1, and from August 23rd to August
24th for Phase 2.

An Intel Pentium4 (2.0G Hz) with 1 GB memory was the target architecture. The compiler
was a PGI Compiler Version 4.0-2. The compiler option was set to “-O0” to evaluate the effect
of code optimization by hand coding.

For the ABCLibScript directives, the following limitations were given.

Instruction Operator: Should use Install and unroll

Instruction Co-operator: Should use variable

Other instruction operators and co-operators are not allowed to be used.

Sampling Points of BP for Matrix Size: The points from 128 to 640 with stride 128 are

set by the install-time optimization.

6.2.2 Result

[Subject A]

Figure 6 shows the performance between hand-tuning code by Subject A and auto-generated
code by ABCLibScript instructed by Subject A.

Subject A wrote a simple 3-nested loop. Subject A then instructed the unrolling function
by ABCLibScript to the three loop variables. The define area for the unrolling depth was from
1 to 8; hence, the generated code included 8*8*8=512 kinds of kernels. In this case, the 512
kernels were tested in the Install-time optimization.

Figure 6 shows that much speedup is obtained with ABCLibScript. Especially, the perfor-
mance with ABCLibScript is stable and reaches about 110 MFLOPS. We obtained a maximum
4.3 times speedup with ABCLibScript in this case.

[Subject B]

Figure 7 shows the performance between hand-tuning code by Subject B and auto-generated
code by ABCLibScript instructed by Subject B.

Subject B wrote a blocked program with the unrolled depth 2 for the innermost loop. The
loop was 6-nested. Subject B instructed the unrolling function by ABCLibScript to use the
variables of the 4th and 5th loops. The define area for the unrolling depth was from 1 to 16;

21

Subject A

160 j j j j j j j ! ! !
with ABCLibScript —¢
AR N orginal - + Q|
S R UL B B ;I ——
120
9100
O
- |
L y : : : : : : : : :
= B0 [A T T
R BB i ik
RN A R N R S R A
T T
+ I 3 3 3 3 3 3
R S e S
20 1 1 1 1 1 1 1

128200 400 600 800 1000 1200 1400 1600 1800 2000 2048
Matrix Dimension

Figure 6: Performance result for Subject A (matrix-matrix multiplication.)

hence, the generated code included 16*16=256 kinds of kernels. In this case, 256 kernels were
tested in the Install-time optimization.

Figure 7 shows that much speedup is obtained by using ABCLibScript. For the performance,
it reaches 200 MFLOPS.

As a result of this experiment, we can say that ABCLibScript is a useful tool from the

viewpoint of performance for non-expert users.

7 Related Work

We can classify conventional auto-tuning software into the following three categories.

Complete Run-time Optimization Software: In this category, the software performs the pa-
rameter adjustments at run-time. For example, to tune computer system parameters such as
I/0O buffer size, Active Harmony [17] and Autopilot [14] can be used. On the other hand, SANS
[5] provides a framework based on run-time optimization by a network agent.

Complete Install-time Optimization Software: In this category, the software performs the pa-
rameter adjustments at the install-time. For example, PHiPAC [2], ATLAS and the paradigm
of AEOS (Automated Empirical Optimization of Software) [1, 18], and FFTW [6] can auto-

22

Subject B

200
180
160
140

n

o 120

=100

80

60 -

40

20

128200 400 600 800 1000 1200 1400 1600 1800 2000 2048
Matrix Dimension

Figure 7: Performance result for Subject B (matrix-matrix multiplication.)

matically tune the performance parameters for computation kernels of their routines when they
are installed. Later, in the SOLAR framework [4], the implementation of hierarchy routines for
computation kernels is considered an install-time optimization.

For formalization of an auto-tuning facility in this category, Naono and Yamamoto formu-
lated the install-time optimization in the SIMPL [13] auto-tuning software framework, which
is a paradigm for parallel numerical libraries. To reduce the search time, a theory for optimal
parameters in an eigensolver was studied by Imamura and Naono [7]. Their theory can be
implemented as a function of ABCLibScript in a new optimization method.

Hybrid Install-time and Run-time Optimization Software: In ILIB [11, 12], the facility of
install-time and run-time optimizations is implemented.

The concepts of the execute-time optimization layer with the user’s knowledge, in order to
improve parameter accuracy and to generalize auto-tuning facilities, are not clear and rarely
discussed in the conventional auto-tuning software mentioned above. We therefore believe that
BEOL in FIBER is a very new concept.

On the other hand, Brewer [3] proposed a new auto-tuning framework for a library by using
the structure of the source code and measured the execution time of the codes to select the best

algorithm. His frameworks were based on an automated modeling function. His method can be

23

implemented as a new automated function for the cost definition function in FIBER; hence, the
implementation will be future work.

Finally, we emphasize that there are no approaches for an easy auto-tuning facility description
and no developments for a computer language pre-processor in these methods. ABCLibScript

is the only language that can describe the auto-tuning facilities.

8 Conclusion Remarks

In this paper, we describe a design policy and implementation for ABCLibScript, which is a
directive of the auto-tuning facility based on the FIBER framework. ABCLibScript focuses
on the application of numerical software and support for the software developer, who wants to
create auto-tuning software, by supplying limited functions for numerical computation.

The FIBER framework needs knowledge from two users, who are defined in the FIBER
framework—that is, the software developer and the end-user [10]. From the software devel-
oper, the following knowledge is needed to describe the auto-tuning facility with ABCLibScript:
(1) Extraction for effective parameters, (2) Specification of target regions, and (3) Heuristic
Values, such as maximal unrolling depth or block length. From the end-user, the following are
needed for auto-tuning in the Before Execute-time optimization to select the best algorithm:
(1) The problem size to execute, and (2) The required accuracy.

We have developed a prototype pre-processor of ABCLibScript, which is a version with
limited functions, such as the unrolling function. The prototype will be opened on the World
Wide Web page of http://www.abc-1ib.org/.

The following things should be considered as future work.

e Nested Instruction Operations: The execution model or specification when the instruction
operations are nested should be considered. Generally speaking, the search space for
parameters has greatly increased in this situation. The reduction or effective methods for

searching, hence, should be considered in the specification of searching.

e Extension of Specification for Automatical Setting of Cost Definition Function: In the
current specification of ABCLibScript, the software developer should describe the cost
definition functions and assure the accuracy of the specified cost definition function. If
the software developer does not know the attributes of their software, the auto-tuning
facility may not work well. To remedy the situation, the automatic addition of the cost
definition function is needed. Consideration of the function and the extension of the current

specification for ABCLibScript will be important future work.

e Addition of Instruction Operation for Performance Stabilization: Extension of the spec-

ification for the Performance Stabilization Facility, which is proposed by Imamura and

24

Naono [8], should be considered as important future work.

e Extension of Specification for Grid and PDA environments: The current specification of

ABCLibScript only focuses on supercomputer and heterogeneous PC cluster environments.
In the FIBER project, Grid and PDA environments are targets for adapting the auto-
tuning facility. Extending the specification and taking into account the nature of such

environments is future work.

Acknowledgments

This study is supported by Japan Science and Technology Agency, “Information Infrastructure
and Applications,” PRESTO.

References

[1]
2]

Atlas project; http://www.netlib.org/atlas/index.html.

Jeff Bilmes, Krste Asanovi¢, Chee-Whye Chin, and Jim Demmel. Optimizing matrix mul-
tiply using phipac: a portable, high-performance, ansi ¢ coding methodology. Proceedings

of International Conference on Supercomputing 97, pages 340-347, 1997.

Eric Allen Brewer. Portable high-performance supercomputing: High-level platform-
dependent optimization. Technical report, Ph.D Thesis, Massachusetts Institute of Tech-
nology, 1994.

Javier Cuenca, Domingo Gimenez, and Jose Gonzalez. Architecture of an automatically
tuned linear algebra library. Parallel Computing, 30:187-210, 2004.

Jack Dongarra and Vector Eijkhout. Self-adapting numerical software for next generation
applications. The International Journal of High Performance Computing and Applications,
17(2):125-131, 2003.

Matteo Frigo. A fast fourier transform compiler. In Proceedings of the 1999 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 169-180, Atlanta,
Georgia, May 1999.

Toshiyuki Imamura and Ken Naono. An evaluation towards an automatic tuning eigensolver
with performance stability. In Proceedings of Symposium on Advanced Computing Systems
and Infrastructures (SACSIS)2003, pages 145-152, 2003.

25

8]

[12]

[14]

[15]

[17]

Toshiyuki Imamura and Ken Naono. Development of a numerical library with a performance
stabilizing mechanism for cache conflicts. In Proceedings of High Performance Computing
Symposium (HPCS) 2004, pages 173180, 2004.

Takahiro Katagiri, Kenji Kise, Hiroki Honda, and Toshitsugu Yuba. Fiber : A software
framework to support automatically addition of generalized auto-tuning facilities. IPSJ
SIG Technical Report, 2003-HPC-94:1-6, 2003.

Takahiro Katagiri, Kenji Kise, Hiroki Honda, and Toshitsugu Yuba. Effect of auto-tuning
with user’s knowledge for numerical software. In Proceedings of ACM Computing Frontiers
04, pages 12-25, Island of Ischia, Italy, April 2004.

Takahiro Katagiri, Hisayasu Kuroda, Kiyoshi Ohsawa, Makoto Kudoh, and Yasumasa
Kanada. Impact of auto-tuning facilities for parallel numerical library. IPSJ Transaction
on High Performance Computing Systems, 42(SIG 12 (HPS 4)):60-76, 2001.

Hisayasu Kuroda, Takahiro Katagiri, and Yasumasa Kanada. Knowledge discovery in
auto-tuning parallel numerical library. Progress in Discovery Science, Final Report of the
Japanese Discovery Science Project, Lecture Notes in Computer Science, 2281:628-639,
2002.

Ken Naono and Yuusaku Yamamoto. A framework for development of the library for mas-
sively parallel processors with auto-tuning function and with the single memory interface.
IPSJ SIG Notes, (2001-HPC-87):25-30, 2001.

Randy L. Ribler, Huseyin Simitci, and Daniel A. Reed. The autopilot performance-directed
adaptive control system. Future Generation Computer Systems, special issue (Performance
Data Mining), 18(1):175-187, 2001.

Katagiri Takahiro, Kinji Kise, Hiroaki Honda, and Toshitsugu Yuba. Fiber: A general
framework for auto-tuning software. Proceedings of The Fifth International Symposium on
High Performance Computing, Springer Lecture Notes in Computer Science(2858):146-159,
2003.

Katagiri Takahiro, Kinji Kise, Hiroaki Honda, and Toshitsugu Yuba. Fiber: A framework of
installation, before execution-invocation, and run-time optimization layers for auto-tuning
software. IS Technical Report, Graduate School of Information Systems, The University of
Electro-Communications, UEC-15-2003-3, May 2003.

Cristian Tapus, I-Hsin Chung, and Jeffery K. Hollingsworth. Active harmony : Towards
automated performance tuning. In Proceedings of High Performance Networking and Com-
puting (SC2002), Baltimore, USA, November 2003.

26

[18] R.Clint Whaley, Antoone Petitet, and Jack J. Dongarra. Automated empirical optimiza-
tions of software and the atlas project. Parallel Computing, 27:3-35, 2001.

27

