ABCLib_DRSSED: A Parallel Eigensolver
with an Auto-tuning Facility

Takahiro Katagiri®”*, Kenji Kise®? Hiroki Honda ®
Toshitsugu Yuba?®

& Graduate School of Information Systems, The University of
Electro-Communications

b Japan Science and Technology Agency, PRESTO
1-5-1 Choufu-gaoka, Choufu-shi, Tokyo 182-8585, JAPAN
Phone: +81-424-43-5642 FAX: +81-424-43-564/

Abstract

Conventional auto-tuning numerical software has the drawbacks of (1) fixed sam-
pling points for the performance estimation; (2) no function to adapt to hetero-
geneous environments. To solve these drawbacks, we developed ABCLib_DRSSED,
which is a parallel eigensolver with an auto-tuning facility. ABCLib_DRSSED has
(1) functions for the sampling points, which consist of an end-user interface and new
auto-tuning optimization timing, called Before Execute-time Optimization (BEO);
(2) a load-balancer for the data to be distributed. In our performance evaluation
of the BEO, we obtained speedup factors from 10% to 90%, and 340% in the case
of a failed estimation. In addition, in our evaluation of the load-balancer, we could
improve the performance by 220%.

Key words: ABCLib, Auto-Tuning Facility, FIBER, Sampling Point,
Load-Balancer

* Corresponding author.

Email addresses: katagiri@is.uec.ac.jp (Takahiro Katagiri),
kis@is.uec.ac.jp (Kenji Kise), honda@is.uec.ac. jp (Hiroki Honda),
yuba@is.uec.ac.jp (Toshitsugu Yuba).

L This paper is IS Technical Reports UEC-IS-2004-8, Graduate School of Informa-
tion Systems, The University of Electro-Communications, in 3rd December of 2004.
This paper is also submitted to Journal of Parallel Computing.

Preprint submitted to Parallel Computing 3 December 2004

1 Introduction

Recently, many numerical libraries with an “auto-tuning facility” have been
developed, e.g., PHiPAC [3], ATLAS [1], FFTW [9], and I-LIB [15]. We refer
to a library with an auto-tuning facility as a SATF (Software with Auto-
Tuning Facility.) Early research on these libraries established the effectiveness
of SATFs [14]. Although SATFs are generally effective from the viewpoint of
performance, there are following two performance problems with the numerical
auto-tuning software.

First, all conventional numerical SATFs need fixed values for the sampling
points to estimate their execution behavior. As an example, the dimensions
for the input matrices are needed. If the SATF developer chooses the wrong
sampling points, the performance may be unstable except for the sampling
points. Unfortunately, conventional SATF's have no function enabling the end-
user to modify the sampling points. To resolve this issue, we supply an end-user
interface for specifying the sampling points. In addition, we also supply a new
auto-tuning timing, named Before Execution-time Optimization, to make sure
the auto-tuning uses end-user specified sampling points.

Second, SATF's need to be adapted to heterogeneous environments, which are
increasing due to the progress of the PC cluster and GRID technologies. In
these environments, conventional methods for a numerical library should be
modified by taking into account the characteristics of the heterogeneous par-
allel environments. The key issue for the numerical library is how to distribute
the input data for the matrices. To resolve this issue, we need a load-balancer
for numerical libraries as part of the auto-tuning facility. The idea for a load-
balancer in a numerical library is not new. For example, a load-balancer can be
built as an extension of the ScaLAPACK library[5]. Load-balancing for dense
linear algebra kernels has been studied in [2]. We emphasize, however, that
the idea for a load-balancing function in auto-tuning is a new approach. The
focus on heterogeneous environments in this paper is limited to either of the
following: the same arithmetic architectures with different execution speeds,
i.e., CPU clocks, or an environment with different system loads, but with the
same CPU clocks. These situations are easily caused by multiple users in the
system.

The organization of this paper is as follows: Section 2 explains the ABCLib
basics, which are the design policy, functions, and FIBER auto-tuning frame-
work. Section 3 explains the ABCLib_DRSSED details, such as the supplied
functions, software architecture, and end-user interface. In Section 4, the de-
tails for the auto-tuning facility are described. In Section 5, we evaluate the
auto-tuning facility by using several kinds of parallel machines. Section 6 ex-
plains related work. Finally, Section 7 summarizes the observations of this

study.

2 ABCLib Library

2.1 Design Policy

ABCLib (Automatically Blocking-and-Communication adjustment Library) is
a parallel numerical library with an auto-tuning facility.

ABCLib is a parallel numerical library for attaining high performance in sev-
eral parallel machines, including those with hierarchical memory architectures
as processing elements (PE). We apply the library to both PC clusters, which
consist of low-cost PCs through low-cost networks, and to supercomputers.

The design policy is listed as follows.

e Blocked Algorithm: The blocked algorithm is adapted to attain high perfor-
mance for computers, including those with hierarchical memory architec-
tures.

e Hiding Communication Latency: Hiding implementations for communica-
tion latency are applied for low-performance networking environments.

o Auto-tuning Facility: An auto-tuning facility is adapted by the library to
establish high performance in several kinds of machine environments.

e Less Argument Interface: A smaller number of arguments for the library
interface are needed. This makes the interface easier to use and avoids a
decrease in performance if the end-user specifics the wrong parameters.

2.2 Functions to be Supplied

The plan to develop subroutines in the ABCLib project is shown below.

e For dense matrices:

- Direct solver for liner equations.

- Direct solver for eigenvalue problems.

- Iterative solver for eigenvalue problems.
e For sparse matrices:

- Direct solver for linear equations.

- Iterative solver for linear equations.

- Iterative solver for eigenvalue problems.
e Tools for auto-tuning facility addition:

- ABCLibScript. A directive to support easy construction of the auto-tuning
facility based on the FIBER auto-tuning framework.
- ABCLibCodeGen: A pre-processor to process the directive of ABCLib-
Script.
e Benchmark Software:
- ABCLibBench: Benchmark software using the auto-tuning facility in AB-
CLib.

2.8 The FIBER Auto-Tuning Framework

For the auto-tuning facility, we apply the FIBER framework [13,12] to AB-
CLib. The FIBER Framework has three kinds of optimization timings: Install-
time, Before Execute-time, and Run-time Optimizations.

In addition, there are two kinds of system parameters to simplify the auto-
tuning process. The system parameters are called the Basic Parameter (BP)
and Performance Parameter (PP). The BP is a fixed parameter for optimizing
the PP. The PP is a target parameter for optimizing. By using these param-
eters, we can define the auto-tuning process—that is, the minimizing of a
function by varying the parameters of PP with the fixed parameters of BP.
The function is called Cost Definition Function in the FIBER framework.

3 ABCLib_DRSSED Library Details

3.1 Supplied Functions

Currently, ABCLib_DRSSED supports the following routines.

e ABCLibDRSAl1lEigVec(A, n, eig, X, ms, me)

- Function: An arbitrary number of eigenvalues and eigenvectors are cal-
culated for real symmetric matrices.

- A: Matrix coefficients (1:NdivP, 1:NdivP), which are distributed by cyclic-
cyclic distribution, where NdivP is the amount of distributed data.

- n: The dimension of the matrix.

- eig: Calculated eigenvalues (1:NdivP), which are distributed in a blocked
manner.

- X: Calculated eigenvectors (1:n, 1:NdivP), which are distributed in a row-
wise blocked manner.

- ms: The first eigenvalue number to compute (the count starts from the
largest absolute value.)

- me: The last eigenvalue number to compute (the count starts from the
largest absolute value.)

ABCLibHerAllEigVec (AR, AI, n, eig, X):

- Function: An arbitrary number of eigenvalues and eigenvectors are cal-
culated for Hermitian matrices.

- AR: Coefficients of the real part of the Hermitian matrix (1:n,1:n) which
is not distributed.

- AI: Coefficients of the imaginary part of the Hermitian matrix (1:n,1:n)
which is not distributed.

- n: The dimension of the matrix.

- eig: Calculated eigenvalues (1:2*NdivP), which are distributed in a blocked
manner.

- X: Calculated eigenvectors (1:2*n, 1:2*NdivP-1), which are distributed in
a row-wise blocked manner.

ABCLib_QRD(X, n)

- Function: Input vectors are orthogonalized. This means QR decomposi-
tion is performed for the input matrix.

- X: Input matrix-formed vectors to be orthogonalized are distributed in a
row-wise blocked manner (1:n, 1:NdivP). The orthogonalized vectors are
updated in this matrix.

- n: The dimension of the matrix.

3.2 Software Architecture

Figure 1 shows the software architecture of ABCLib_DRSSED.

As shown as Figure 1, ABCLib_DRSSED has two kinds of auto-tuning layers
and one system layer.

Run-time Auto-tuning Layer: This is the part of the auto-tuning process
when the library runs. The time for the object of auto-tuning is measured
at run-time, and the best parameter is selected or estimated.

Static Auto-tuning Layer: This is the part of the auto-tuning process
when the library is installed or before the library is invocated. The time for
the object of auto-tuning is measured, and the best parameter is selected or
estimated. The computation to estimate the execution time is performed.
Then, the data is saved into a file named the Parameter Information File.
The effect of auto-tuning is also analyzed, and the report is stored in a file
named the Parameter Analysis File.

Parameter Selection Layer: This part selects or estimates the best pa-
rameter. This layer is a kind of run-time routines. The layer selects the best
parameter based on the measured or estimated parameter information in

ABCLib_DRSSED Library Interface

Parameter Selection Layer Least-squared Coefficients

Parameter Selection Component [ﬁ Modeling Component }
Measured Best Parameters

Run-time Auto-tuning Layer \
Modeling Component H Parameter Search Component l
A

S
L
Load Balancer Componerltw (Object Measurement Component
w\ﬁ R .
Linear Algebra Routines : Parameter Information

File

I

ABCLib_DRSSED Auto-tuning Interface

Measured Best Parameters

Machine Loads

[Modeling Component}-b{ Parameter Search Component Least-squared Coefficients
f Machine Loads

Static Auto-tuning Layer

Object Measurement Component

- - Tuning Effect
ABCLib_DRSSED Library Interface I

nformation
. Parameter
Parameter Analysis Routine J— Analysis
File

FIBER Auto-tuning Timings Install-time Optimization

. * Blocking Length Adjustment; * Loop Unrolling Depth Adjustment;
Library Installed * Data Distribution Adjustment;

ABCLib_DRSSED Auto-tuning Interface

Before Execute-time Optimization
Matrix Size Fixed, mmp| * Blocking Length Adjustment; * Loop Unrolling Depth Adjustment;
Matrix Coeficient Fixed, * Data Distribution Adjustment; * Orthogonalization Method Select;
Machine Load Fixed
ABCLib_DRSSED Auto-tuning Interface

Run-time Optimization
h * Data Distribution Adjustment; * Orthogonalization Method Select;

Library runs

ABCLib_DRSSED Library Interface

Fig. 1. Software Architecture in ABCLib_DRSSED.

the Parameter Information File.

The Run-time and Static Auto-tuning Layers in Figure 1 have three kinds
of components. They are the Object Measure Component, Parameter
Search Component, and Modeling Component. These components dif-
fer between the Run-time and Static Auto-tuning Layers in that the Object
Measurement Component in the Run-time Auto-tuning Layer does not call
the ABCLib_DRSSED library interface. This is because the target parameters
for the Run-time Auto-tuning Layer are obvious and can be specified directly
at run-time.

The Object Measure Component measures the execution time of the target.

The time data is sent to the Parameter Search Component. The Parameter
Search Component determines the search method for the target parameters to
optimize. The search method is also determined by the sampling point from the
end-users. Finally, the execution behavior is modeled based on the information
from the Parameter Search Component. The order for the modeling formula
from the end-user is also used in the Modeling Component.

In the Run-time Auto-tuning Layer, there is the Load Balancer Compo-
nent. This component determines the amount of the distributed data based on
the machine load information in the Parameter Information File. The amount
is sent to the Linear Algebra Routines.

From the end-user’s point of view, auto-tuning is performed in the three kinds
of timings in Figure 1 based on the FIBER framework. The end-user in the
FIBER framework is the system administrator or the library user.

First, Install-time Optimization is performed by invocating the ABCLib_DRSSED
Auto-tuning Interface, when the library is installed. The main purposes of this
optimization are the adjustments of the blocking length and loop unrolling
depth. If the end-user is in a heterogeneous computer environment and the
performance is permanently stable, the adjustment of the data distribution
amount can be an optimization target. The end-user in the Install-time Opti-
mization is the system administrator.

Second, Before Execute-time Optimization is performed by invocating the
ABCLib_DRSSED Auto-tuning Interface, when the system parameters are
defined by the end-user. For example, the matrix dimension to execute is a
system parameter. The main purposes of this optimization are the adjust-
ments of the blocking length and loop unrolling depth. If the end-user knows
that the performance in the computer environment is stable when the library
executes in this timing, the adjustment of the data distribution amount can
be an optimization target. If the end-user knows that the coefficients of the
input matrix do not change whenever the library calls, the selection of the
orthogonalization methods can be an optimization target. The end-user in the
Before Execute-time Optimization is a library user.

Finally, Run-time Optimization is performed by invocating the ABCLib_DRSSED
Library Interface at run-time. The main purposes of this optimization are the
adjustments of the data distribution amount. Most loads in the computer en-
vironment cannot be fixed before the library runs. The optimization, hence,

is needed to adjust the data distribution amount based on the machine loads

at run-time. If the coefficients of the input matrix are fixed at run-time, the
selection of the orthogonalization method is also a choice of optimization.
However, the function is not implemented in the current version.

The use of the above three optimization timings for auto-tuning is a typical

scenario in the FIBER framework.

3.3 FEnd-user Interface

3.3.1 Run-time Options

The end-user can specify the run-time options in a file named the Specification
File. For example, .ABCLibDRSSEDA11EigVec is the file which specifies the
run-time options for the ABCLibDRSA11EigVec routine.

The system administrator can specify the auto-tuning in Install-time with
sampling points for the matrix dimensions, which range from 128 to 2048
stridden by 128, as follows:

—autotune yes —-starttunesize 128 -maxtunesize 2048
-tunestridel00 128 -tunestridel000 1028

If the library user would like to specify the Before Execute-time Optimization
in the dimension of 1234, the library user can specify the following:

—autotune yes -starttunesize 1234 -maxtunesize 1234
—tunestridel00 128 -tunestridel000 1028 -beo yes

If the library user would like to invocate the load-balancer in Before Execute-
time, the library user can write the options as follows:

-autotune yes -starttunesize 128 -maxtunesize 2048
—tunestridel00 128 -tunestridel000 1028 -beo yes
—heterogeneous yes

Finally, the auto-tuning is finished. To execute the library with tuned param-
eters, the library user can specify the options as follows:

-ort CGS -autotune no
-starttunesize 128 -maxtunesize 2048 -tunestridel00 128

In this case, the re-orthogonalization method in the inverse iteration method
is selected as the classical Gram-Schmidt method.

3.3.2 Tuned Parameter Analyzer

In ABCLib_DRSSED, an analyzing function for auto-tuned parameters is in-
cluded. The function analyzes the effect of auto-tuning, and stores the result
in the Parameter Analysis File.

For example, the effect of auto-tuning for ABCLib_QRD, which is a QR routine in
ABCLib_DRSSED, is stored in the file autotuneMGSAOana.dat. The contents
of the file are as follows:

=== ABCLib_QRD Tuning Log Analysis Result

ProblemSize | Const [s] (Parameter) | Worst [s] (Parameter)
| Best [s] (Parameter) s| C/B | W/B
128 | 0.0250(4, 4, 8, 4, 8) | 0.0798(1, 4, 8, 4, 8)
| 0.0245(5, 1, 3, 4, 8) | 1.022 | 3.255
256 | 0.0940(4, 4, 8, 4, 8) | 0.0988(1, 4, 8, 4, 8)
| 0.0937(5, 1, 1, 3, 2) | 1.003 | 1.055
384 | 0.2083(4, 4, 8, 4, 8) | 0.2173(1, 4, 8, 4, 8)
| 0.2042(5, 2, 5, 4, 5) | 1.020 | 1.064
512 | 0.3729(4, 4, 8, 4, 8) | 0.4359(1, 4, 8, 4, 8)
| 0.3664(6, 2, 4, 3, 6) | 1.018 | 1.190

The above output shows the effect of auto-tuning from the viewpoint of
speedups to execution with the defaults, and the worst parameters to exe-
cution with the best parameter.

4 Auto-tuning Facilities

4.1 The Method for Optimization

Although we can choose several methods for optimizing the parameters in the
FIBER framework, we adapt the least-squares method with QR decomposi-
tion[7] with a partial pivoting to estimate the parameters because of the easy
implementation.

The formula for estimating the execution time—we call this formula the Cost
Definition Function in the FIBER Framework—is the k-th order linear poly-
nomial function in the implementation of ABCLib_DRSSED.

4.2 The Method for Parameter Estimation

Let @ be a set of sampling points. There are two sampling points for the
FIBER framework. They are the sampling points for BP and PP. The target
sampling points for BP are the dimensions for the input matrix. We denote

the set of sampling points as ®,. The target sampling points for PP are the
depth of the unrolling and the width of the blocking size. We denote the set
for p;, which is the i-th parameter of PP, as ®,,.

The i-th argument of the set ® is denoted as ¢;. We also denote the number
of arguments for the set as | - |. For example, the number of arguments for the
set of @, is |P,,|.

Figure 2 shows the method for the parameter estimation in ABCLib_DRSSED.
The routine of LSM(z,y) in Figure 2 returns estimated parameters in the
area of x by the least-squares method with the measured time of y. The
formula for this estimation is a linear polynomial function, whose order is
specified by the library developer. The routine of LSM(z,y) also calculates
and stores the coefficients of the formula into the Parameter Information File.
The implemented routine of Figure 2 forms a part of the Modeling Component
in Figure 1.

<1> do kp=1, > |(I)pz|

<2> @ nloopzla |q)n|

<3> do lloozozla |q)pkp|

(4) t = Measured Executing Time of the Target Routine with
the Dimension ¢, and the Parameter ¢,, o

5> x(lloop) - lloop;
6> y(lloop) =1,
7) enddo

=== Estimation of execution time for the parameters of py,
—=—=—with the fixed Samphng pOintS of ¢nnloop'

8) if (|®pkp| .eq. The Number of All Definition Area for py,) then
) Parameter = the measured best in (3) — (7).
0) 2T (Nioop, *) = Pringyoy YY (Moo, *) = y(*);
1) else
2) Parameter = LSM (x,y);
3) do i=1, The Number of All Definition Area for py,
4) 2T (Noop; 1) = Pni
5) enddo
6) YY(Nioop, *) = The Estimated Values in the LSM (z,y);
7) endif
8) enddo

=== Estimation of execution time for the parameters of all area for n.

P e e e e O R T e e N e N e e e N O B T
O S S S S Y e)

19) do ljpop=1, The Number of All Definition Area for py,
20) call LSM (2x(1, lioop), yy(1, lioop));

21) enddo

22) enddo

Fig. 2. Method for parameter auto-tuning in ABCLib_DRSSED.

10

In Figure 2, there are two phases to estimate the parameters: (1) Estimation
of PP with @, for a fixed BP parameter (in this case, the dimension n of the
matrix) in (2)—(18); (2) Estimation of time in all areas of the BP parameter
(in this case, the dimension n of matrix) in (19)—(21);

In Phase (1), if the sampling points for PP are the same as the number of
all the definition areas of the parameter py,, the measured best parameter
is chosen (See (9) in Figure 2.) Otherwise, a parameter is estimated by the
least-squares method (See (12) in Figure 2.)

In Phase (2), since the all sampling points for the parameter pj, are measured
or estimated by the least-squares method, the execution time for varying the
dimension fixed by the parameter of py, is estimated. This estimation is per-
formed by all definition areas of py,. For this reason, all the best parameters
for py, can be estimated in the arbitrary dimension of n, which is specified by
the library user at run-time.

Finally, the library user specifies the dimension at run-time of the library. The
best parameter is estimated by using the method in Figure 3. The routine
EstLSM (n,p) in Figure 3 estimates the best parameters for the parameter of
Pin in the dimension of n. In this estimation, the k-th order linear polynomial
with calculated coefficients is used. The order of k is specified by the library
developer. The coefficients are stored in the Parameter Information File. The
implemented routine of Figure 3 is part of the Modeling Component in the
Parameter Selection Layer in Figure 1.

¢ === Library user specifies the dimension n;, for the parameter p;,.

(1) if (ni, € ®,) then

(Parameter = the Measured Best or Estimated Parameter for p;,,
which is stored in the Parameter Information File.

DO
~

else
) Parameter = EstLSM (n,, pin)
(5) endif

P
W~ o
R

Fig. 3. Method for the estimated parameter in ABCLib_DRSSED.

As shown as Figure 3, if the library user specifies the measured sampling
dimensions, the system sets the best parameter. If the library user specifies
a dimension not sampled, the system estimates the best parameter using the
least-squares method. In this estimation, the calculated coefficients in the
routine of Figure 2 are used.

11

4.3 The Method for Load-Balancing

Figure 4 shows the measurement part of the machine loads. Figure 4 forms a
part of the Object Measurement Component in Figure 1.

(1) t; = Measured Time with a Benchmark Program in PE i.

(2) T = Summation of t; (i =1,2,...,p) and share the result;

(3) Ri=t/T;

(4) Store the R; (i = 1,2,...,p) to the Parameter Information File;

Fig. 4. Measurement part for the machine loads in ABCLib _DRSSED.

Figure 5 shows the data distribution length decision part for the load-balancer.
Figure 5 forms a part of the Load-balancer Component in Figure 1.

=== Give the data length of n. The following is for PE i process.

1) Load R; (i=1,2,...,p) from the Parameter Information File;
2) iendy = 0;
3) dok=1,p

istart, = tendy_ 1 +1;
tendy, = istart, + n X Ry;
enddo
iend, = n;
return (istart;, iend;) to distribute the data,;

P e e e e e)
~J O Ot =
e " " "~ ~—— ~— ~—

oo

Fig. 5. Data distribution decision part for the load-balancer in ABCLib_DRSSED.

Figure 4 and Figure 5 indicate that the data is distributed according to the
ratio of each execution time in PE 7 to the summation of all execution times
by the benchmark program. We used the DAXPY program in the Basic Linear
Algebra Subprograms (BLAS) for the benchmark program. The target rou-
tines for ABCLib_DRSSED are also linear algebra programs; hence, we believe
the benchmark program can work well to estimate the behavior of the target
programs.

5 Performance Evaluation

5.1 Machine Environments

We used the following three kinds of parallel computers to evaluate the FIBER
optimization facilities.

12

e HITACHI SR8000/MPP
- System configuration: The HITACHI SR8000/MPP nodes have 8 PEs.
The theoretical maximum performance of each node is 14.4 GFLOPS.
Each node has 16 GB of memory, and the inter-connection topology is a
three-dimensional hypercube. Its theoretical throughput is 1.6 Gbytes/s
for one-way communication, and 3.2 Gbytes/s for two-way. For the com-
munication library, the HITACHI optimized MPI was used.
- Compiler: The HITACHI Optimized Fortran90 V01-04 compiler with spec-
ified options, -opt=/ -parallel=0 and -opt=0 -parallel=0, was used.
e Fujitsu VPP800/63
- System configuration: This machine is a vector-parallel style of supercom-
puter. The Fujitsu VPP800/63 at the Academic Center for Computing and
Media Studies, Kyoto University was used. The total number of nodes for
the VPP80O0 is 63. The theoretical maximum performance of each node is
8 GFLOPS for vector processing, and 1 GFLOPS for scalar processing.
Each node has 8 GB of memory, and the inter-connection topology is a
crossbar. Its theoretical throughput is 3.2 Gbytes/s. For the communica-
tion library, the Fujitsu optimized MPI was used.
- Compiler: The Fujitsu optimized UXP/V Fortran/VPP V20120 with com-
piler specified options, -05 -X9 and -00 -X9, was used.
e PC Cluster
- System configuration: The Intel Pentium4 (2.0 GHz), as a node of a PC
cluster, was used. The number of PEs for the PC cluster is 4, and each
node has 1 GB (Direct RDRAM/ECC 256 MB*4) of memory. The system
hardware board is the ASUSTek PAT-E+A (Socket 478). The network is
the Onboard Broadcom Gigabit Ethernet*2. Linux 2.4.9-34 and MPICH
1.2.1 are used as the operating system and communication library.
- Compiler: The PGI Fortran90 4.0-2 compiler with specified options, -fast
and -00, was used.

5.2 Hypothesis of the Cost Definition Function

The following hypothesis is made in this performance evaluation.

e Cost Definition Function: 5th-order linear polynomial function of
a12° + apxt + asx® + apx® + asz' + ag.

Since we found that the 5-th order polynomial function had the least errors
in the PC Cluster in the experiment with the Cost Definition Functions from
the 0-th to 5-th orders [11], we set this hypothesis.

13

5.8 Target Processes

We will evaluate auto-tuning facilities in the FIBER framework by using the
following four processes for the eigensolver.

1. The Householder tridiagonalization routine in ABCLibDRSA11EigVec:
PP = {ictr, imv, iud }
2. The inverse iteration routine in ABCLibDRSA11EigVec:
PP = { kort }
3. The Householder inverse transformation routine in ABCLibDRSA11EigVec:
PP = { ichit, ihit }
4. The QR decomposition routine with the Gram-Schmidt method
in ABCLib_QRD: PP = { ibl, iop, isp, ioo, iso }

5.4 Sampling Point Errors

The sampling points for this evaluation are listed as follows.

Definition area of iud: { 1, 2, ..., 16 }

Sampling Points of iud: ®;,4 = { 1, 2, 3, 4, 8, 16 } (Sampling Points 1)
Sampling Points of iud: ®;,4 = { 1, 2, ..., 16 } (Sampling Points 2)
Sampling Points for Problem Size of n: ®,, = { 200, 400, 800, 2000, 4000,
6000, 8000 }

Table 1 shows the estimated errors with the sampling points 1.

The sampling points were well estimated in these supercomputer environments
according to Table 1, since the relative errors for the execution times between
the best and the estimated parameters were 7% at least.

The relative errors, however, ranged from 18% to 219% in the PC Cluster,
and the fluctuation was large. This means that we need another approach in
this environment. To solve this problem, we must modify the sampling points,
the cost definition function, and the optimization method.

Table 2 shows the effect of the optimization in Before Execute-time. The nota-
tion “Est. Param.1” means the estimated parameter with the sampling points
1, and “Est. Param.2” means the estimated parameter with the sampling
points 2. The values in “Best Param.” indicate the optimized parameters in
the Before Execute-time Optimization.

The results of Table 2 tell us that there is no room to improve the accuracy
of the estimate in supercomputer environments. Increasing sampling points,

14

Table 1
Errors in the Install-time Optimization

(a) HITACHI SR8000/MPP (1 Node, 8 PEs)

Sampled Est. Param.1 Err. in Best Param. Rel. Err.
Dimension (ET [s]) Sampling Points (BT [s]) (ET — BT)/BT
200 14 (5.905E-2) 8.749E-18 6 (5.867E-2) 0.64 %
400 14 (0.1665) 1.410E-16 14 (0.1665) 0 %
800 14 (0.6198) 1.167E-15 14 (0.6198) 0%
2000 14 (5.833) 9.125E-14 16 (5.824) 0.15 %
4000 14 (41.22) 7.251E-12 15 (41.00) 0.54 %
8000 13 (314.6) 4.362E-10 15 (314.4) 0.04 %
(b) Fujitsu VPP800/63 (8 PEs)

Sampled Est. Param.1 Err. in Best Param. Rel. Err.
Dimension (ET [s]) Sampling Points (BT [s]) (ET — BT)/BT
200 7 (3.073E-2) 2.283E-18 2 (3.058E-2) 0.49 %

400 7 (6.558E-2) 5.277TE-17 5 (6.530E-2) 0.44 %

800 7 (0.1521) 1.456E-16 10 (0.1515) 0.40 %

2000 5 (0.6647) 2.175E-15 4 (0.6644) 0.04 %

4000 6 (3.418) 2.414E-14 2 (3.203) 6.7 %

8000 7 (23.06) 1.412E-12 4 (22.40) 2.9 %
(c) PC Cluster (4 PEs)

Sampled Est. Param.1 Err. in Best Param. Rel. Err.
Dimension (ET [s]) Sampling Points (BT [s]) (ET — BT)/BT

200 7 (0.2786) 1.391E-16 13 (0.2345) 18.8 %
400 6 (2.149) 3.079E-15 4 (0.6739) 218 %
800 6 (5.603) 6.102E-14 14 (2.7176) 106 %
2000 6 (20.38) 1.533E-12 2 (15.89) 28.3 %
4000 6 (106.5) 6.107E-11 2 (88.96) 19.7 %
8000 2 (583.2) 1.901E-9 2 (583.2) 0%

however, can be improve the accuracy of the estimate in the PC cluster. This
is because the relative error in the dimension of 1234 in Table 2(c) is reduced
from 28.7% to 3.1%. This reduction cannot be ignored. On the other hand, we
can reduce the execution time of 1%-30% by using the library user-specified
dimension information. However, the effect depends on the number of sampling

15

Table 2

Effect of sampling points in Before Execute-time Optimization.
(a) HITACHI SR8000/MPP (1 Node, 8 PEs)

End-User Est. Param.l Est.Param.2 Best Param. Rel. Err.1 Rel. Err.2

Specified (ET1 [s]) (ET2 [s]) (BEO Opt., (ET1-BT) (ET2- BT)

Dimension Eff. BT [s]) /BT /BT
123 14 (0.0333) 11 (0.0341) (0 0333) 0.00 % 24 %
1234 14 (1.668) 16 (1.662) 6 (1.662) 0.36 % 0%
9012 16 (440.6) 12 (447.0) 6 (440.6) 0% 1.4 %

(b) Fujitsu VPP800/63 (8 PEs)

End-User Est. Param.1 Est.Param.2 Best Param. Rel. Err.1 Rel. Err.2
Specified (ET1 [s)]) (ET2 [s)]) (BEO Opt., (ET1—-BT) (ET2- BT)

Dimension Eff. BT [s]) /BT /BT
123 7 (0.0183) 1 (0.0182) 10 (0.0181) 1.1 % 0.5 %
1234 6 (0.2870) 6 (0.2870) 4 (0.2847) 0.8 % 0.8 %
9012 14 (34.67) 16 (34.29) 4 (32.03) 8.2 % 8.2 %

(c) PC Cluster (4 PEs)

End-User Est. Param.l Est.Param.2 Best Param. Rel. Err.1 Rel. Err.2

Specified (ET1 [s]) (ET2 [s]) (BEO Opt., (ET1-BT) (ET2- BT)
Dimension Eff. BT [s]) /BT /BT
123 14 (0.1286) 4 (0.1285) 10 (0.1269) 1.3 % 1.2 %
1234 6 (7.838) 5 (6.2835) 10 (6.090) 28.7 % 3.1 %
9012 6 (973.6) 1 (867.0) 2 (845.6) 15.1 % 2.5 %
points.

Generally, the end-user can reduce the sampling points from 16 to 6 for the
parameter iud, and the optimization time is decreased to a factor of 6/16 =
3/8. However, the quality of the estimation may decrease, as in the PC cluster
case in Table 2(c). This is a typical trade-off issue in auto-tuning software.

5.5 The Effect of Before Fxecute-time Optimization

In this evaluation, we set the following hypotheses.

e Sampling points for problem sizes of n:

16

- The SR8000:
Compiler Option -opt=4: ®,, = {100, 200, ..., 1000, 2000, ..., 6000}
Compiler Option -opt=0: ®,, = {100, 200, ..., 1000, 2000}
- The VPP800:
Compiler Option -05: ®,, = {100, 200, ..., 1000, 2000, ..., 6000}
Compiler Option -00: ®,, = {100, 200, ... ,900}
- PC Cluster:
Compiler Option -fast: ®,, = {100, 200, ..., 1000, 2000, ..., 9000, 10000}
Compiler Option -00: ®,, = {100, 200, ..., 2000}
These values were determined from the limits of the computation time for
each machine.

The sampling points for the PPs in this example are:

e &, = { one, red }: The communication method for the reduction oper-
ation in the Householder tridiagonalization routine. ¢;.,, =o0ne means us-
ing an implementation with one-to-one communication libraries (MPI_SEND,
MPI_RECV). ¢;.r,=red means using an implementation with an MPI released
library (MPI_ALLREDUCE).

e &, ={1,2, .., 16 }: The unrolling depth for the outer loop of a matrix-
vector product in the Householder tridiagonalization. The kernel is formed
as a double nested loop, BLAS2.

e &, =1{1,2, .., 16 }: Unrolling depth for the outer loop of an updating
process in the Householder tridiagonalization. The kernel is formed as a
double nested loop, BLAS2.

e &, = { broad, blk, non-blk }: The communication method for the gath-
ering operation in the Householder inverse transformation routine. ¢;.p;, =broad
means an implementation using an MPI broadcast routine (MPI_BCAST).
Gichit,=b1lk means an MPI blocking one-to-one communication routine (MPI_SEND,
MPI_RECV). ¢jchit,=non-blk means an MPI non-blocking one-to-one com-
munication routine (MPI_SEND, MPI_IRECV).

e &, ={1,2,...,16 }: The unrolling depth for the outer loop of the House-
holder inverse transformation routine. The kernel is formed as a double
nested loop, and this is classified as BLASI.

e &, ={1,2,3,4,8,16 }: The blocking length for the blocked algorithm of
the QR decomposition with the Gram-Schmidt method. The blocking length
can also control the communication frequency and volume. The kernel is
formed as a triple nested loop, and this is classified as BLAS3.

e O,,, = {1, 2,3, 4 }: The unrolling depth of the outer loop for the pivot
PEs in the QR decomposition routine.

e &,, ={1,2, 3,4, 8,16 }: The unrolling depth of the second loop for the
pivot PEs in the QR decomposition routine.

e &,,, ={1,2,3,4 }: The unrolling depth of the outer loop for the updating
process in the QR decomposition routine.

e &, ={1,2,3,4,8,16 }: The unrolling depth of the second loop for the

17

updating process in the QR decomposition routine.

We only implemented the auto-tuning function for ®;, in ABCLib_QRD. This
is because the auto-tuning function for the nested parameters of (®;op, Pisp)
and (®;,0, Pi50) needs a different cost definition function except for the k-th
order linear polynomial functions adapted to ABCLib_DRSSED.

Figures 3 and 4 show the IO (Install-time Optimization) and BEO (Before
Execute-time Optimization) effects in this experiment. The following can be
seen from the results.

e The IO estimated parameters are not always optimal, but they are sufficient
in many cases. This indicates that the 5th-order polynomial function is a
sufficient estimation in this case.

e BEO effects are about 10%-90% speedups compared to the I0 estimated
parameters.

e We found, however, that in one case the IO estimations totally fail. In this
case, a speedup factor of 340% for 10 estimated parameters is obtained.

The above points indicate that BEO is a needed facility for the following
reasons: (1) BEO can improve the speed by about 10%-90% compared to
IO optimization results; (2) To avoid the failures of the 10 estimation, BEO
should be performed. This also indicates that BEO can assure the users about
the library performance.

5.6 The Effect of the Load-Balancer

If the end-user uses a PC cluster which consists of different performance com-
puter architectures, namely, a heterogeneous environment, the amount of dis-
tributed data should be changed to attain high performance.

The install-time when the system administrator wants to install the library, or
when the library user knows the performance is stable, but there are different
loads while the library runs, are evaluated in this experiment. By using Install-
time Optimization, or Before Execute-time Optimization, load-balancing is
established in ABCLib_DRSSED. The target of the load-balancer is the out-
put matrix for the calculated eigenvectors and the output array to store the
eigenvalues in ABCLibDRSA11EigVec.

We added the AMD Opteron Processor 244 (1.8 GHz) * 2PE with 2 GB of
memory (DDR-SDRAM/ECC 512NV*4) as a node of the PC Cluster. The
PC Cluster, hence, consists of three nodes of the Pentium4 (2 GHz), which
are named Nodel through Node3, and 1 node of the AMD Opteron (1.8 GHz),
which is named Node4. The master node is Nodel, that is, the Pentium4.

18

We also added extended loads with a program to the master node to increase
the heterogeneity of the PC cluster. The target routine is the Householder
inverse transformation routine in ABCLibDRSA11EigVec.

Table 5 shows the result.

Surprisingly, speed decreases of 30% were observed in Table 5(a). One reason
is the worse cache blocking for Node4, because the amount of distributed data
is increased by using the load-balancing function. We need more a detailed
analysis for this problem of load-balancing discovered through this experiment.
The result also indicates that applying the load-balancing function will be a
choice of auto-tuning.

We obtained speedup factors from 130% to 220%, except for the speedup
factors in Table 5(a). The effect was increased in the case of larger dimensions
and high heterogeneity (See Table 5(c).) In the case of high heterogeneity, the
effect of the load-balancing function was high. Hence, in this case, the function
is useful.

6 Related Work

We can classify the conventional auto-tuning software into the following three
categories.

Complete Run-time Optimization Software: In this category, the software per-
forms the parameter adjustments at run-time. For example, to tune computer
system parameters such as the I/O buffer size, Active Harmony[18] and Au-
topilot[17] can be used.

The SANS [8] project provides a framework based on run-time optimization
by a network agent. This project also includes an install-time optimization
scenario [8]. However, the agent approach is basically classified as run-time
tuning, because it decides the appropriate parameters at run-time.

Complete Install-time Optimization Software: In this category, the software
performs the parameter adjustments at the install-time. For example, PHiPAC
[3], ATLAS and the paradigm of AEOS (Automated Empirical Optimization
of Software) [1,19], and FFTW [9] can automatically tune the performance pa-
rameters for the computation kernels of their routines when they are installed.
Later, in the SOLAR framework [6], the implementation of hierarchy routines
for the computation kernels is considered an install-time optimization.

For formalization of an auto-tuning facility in this category, Naono and Ya-
mamoto formulated the install-time optimization in the SIMPL [16] auto-

19

tuning software framework, which is a paradigm for parallel numerical li-
braries. To reduce the search time, a theory for optimal parameters in an
eigensolver was studied by Imamura and Naono [10].

Hybrid Install-time and Run-time Optimization Software: In ILIB [14,15], the
facility of install-time and run-time optimizations is implemented.

The concepts of an execute-time optimization layer with the user’s knowledge,
in order to improve parameter accuracy and to generalize auto-tuning facilities,
are not clear and rarely discussed in the conventional auto-tuning software
mentioned above. We therefore believe that BEO in FIBER is a very new
concept.

We have another concern for using a numerical library in a heterogeneous
environment.

Numerical Dangers of Heterogeneous FEnuvironments: Numerical libraries in
heterogeneous environment have another issue—that is, the reliability issue
[4]. This is caused by the different computer arithmetic architectures. To avoid
this issue is basically difficult. Hence, the function for heterogeneous environ-
ments should be limited. As we demonstrated in this paper, the load-balancing
function should be used in PC clusters which have almost the same computer
architectures but different current loads.

7 Conclusion

In this paper, we solved the issue of sampling points for auto-tuning soft-
ware by supplying an end-user interface and the new optimization timing,
called Before Execute-time Optimization (BEO), in the FIBER framework.
We also developed a load-balancing function for data distribution to improve
the performance in heterogeneous environments. Our performance evaluation
indicated that speedup factors from 10% to 90% (and 340% in a failed estima-
tion case in the Install-time Optimization) by invoking the BEO. In addition,
we can improve the performance to 220% by using the load-balancer in a het-
erogeneous environment. Thus, the functions proposed this paper are crucial
factors for improving performance.

By opening the interface of sampling points to end-users, the library can im-
prove the stability of parameter estimation, and can also reduce the optimiza-
tion time. Generally speaking, if an end-user reduces the sampling points by
half to the default parameters, the optimization time will be reduced by half
as well. But, the quality of the estimation may decrease. Hence, we have a
trade-off between the quality and time in auto-tuning. The solution for the

20

problem, taking into account of the trade-off, will be important future work
in auto-tuning software.

The information of ABCLib project and the source codes of ABCLib_DRSSED
have been opened in the WWW page of www.abc-1ib.org.

Acknowledgments

This study is supported by the Japan Science and Technology Agency, “In-
formation Infrastructure and Applications,” PRESTO.

References

[1] ATLAS project; http://www.netlib.org/atlas/index.html.

[2] Olivier Beaumont, Arnaud Legrand, Fabrice Rastello, and Yves Robert.
Dense linear algebra kernels on heterogeneous platforms: Redistribution issues.
Parallel Computing, 28(2):155-185, 1997.

[3] Jeff Bilmes, Krste Asanovi¢, Chee-Whye Chin, and Jim Demmel. Optimizing

[5]

[7]

8]

matrix multiply using PHiPAC: a portable, high-performance, ANSI C coding
methodology. Proceedings of International Conference on Supercomputing 97,

pages 340-347, 1997.

L.S. Blackford, A. Cleary andA. Petitet, R.C. Whaley, J. Demmel, 1. Dhillon,
H. Ren, K. Stanley, J. Dongarra, and S. Hammarling. Practical experience
in the numerical dangers of heterogeneous computing. ACM Transactions on
Mathematical Software, 23(2):133-147, 1997.

L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S.Hammarling, G.Henry, A. Petitet, K. Stanley, D. Walker, and
R.C. Whaley. ScaLAPACK Users’ Guide. STAM, 1997.

Javier Cuenca, Domingo Gimenez, and Jose Gonzalez. Architecture of an
automatically tuned linear algebra library. Parallel Computing, 30:187-210,
2004.

James W. Demmel. Applied Numerical Linear Algebra, pages 105-117. STAM,
1997.

Jack Dongarra and Vector Eijkhout. Self-adapting numerical software for

next generation applications. The International Journal of High Performance
Computing and Applications, 17(2):125-131, 2003.

21

[9] Matteo Frigo. A Fast Fourier Transform compiler. In Proceedings of the
1999 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 169-180, Atlanta, Georgia, May 1999.

[10] Toshiyuki Imamura and Ken Naono. An evaluation towards an automatic
tuning eigensolver with performance stability. In Proceedings of Symposium on
Advanced Computing Systems and Infrastructures (SACSIS)2003, pages 145—
152, 2003.

[11] Takahiro Katagiri, Kenji Kise, Hiroki Honda, and Toshitsugu Yuba. FIBER:
A software framework to support automatically addition of generalized auto-
tuning facilities. IPSJ SIG Notes, 2003-HPC-94:1-6, 2003.

[12] Takahiro Katagiri, Kenji Kise, Hiroki Honda, and Toshitsugu Yuba. Effect of
auto-tuning with user’s knowledge for numerical software. In Proceedings of
ACM Computing Frontiers 04, pages 12-25, Island of Ischia, Italy, April 2004.

[13] Takahiro Katagiri, Kenji Kise, Hiroki Honda, and Toshitsugu Yuba. FIBER:
A general framework for auto-tuning software. Proceedings of The Fifth

International Symposium on High Performance Computing, Springer Lecture
Notes in Computer Science(2858):146-159, 2003.

[14] Takahiro Katagiri, Hisayasu Kuroda, Kiyoshi Ohsawa, Makoto Kudoh, and
Yasumasa Kanada. Impact of auto-tuning facilities for parallel numerical
library. IPSJ Transaction on High Performance Computing Systems, 42(SIG
12 (HPS 4)):60-76, 2001.

[15] Hisayasu Kuroda, Takahiro Katagiri, and Yasumasa Kanada. Knowledge
discovery in auto-tuning parallel numerical library. Progress in Discovery
Science, Final Report of the Japanese Discovery Science Project, Lecture Notes
in Computer Science, 2281:628-639, 2002.

[16] Ken Naono and Yuusaku Yamamoto. A framework for development of the
library for massively parallel processors with auto-tuning function and with the
single memory interface. IPSJ SIG Notes, (2001-HPC-87):25-30, 2001.

[17) Randy L. Ribler, Huseyin Simitci, and Daniel A. Reed. The Autopilot
performance-directed adaptive control system. Future Generation Computer
Systems, special issue (Performance Data Mining), 18(1):175-187, 2001.

[18] Cristian Tapus, I-Hsin Chung, and Jeffery K. Hollingsworth. Active Harmony
: Towards automated performance tuning. In Proceedings of High Performance
Networking and Computing (SC2002), Baltimore, USA, November 2003.

[19] R.Clint Whaley, Antoone Petitet, and Jack J. Dongarra. Automated empirical
optimizations of software and the ATLAS project. Parallel Computing, 27:3-35,
2001.

22

Table 3
10 and BEO effects for the eigensolver on the three kinds of parallel machines. One

second is the unit of execution time.

(a) HITACHI SR8000/MPP
(a-1) Compiler Option (-opt=4)

Dim. Def. I10-Est. Param. BEO-Opt. Param. Eff.1 Eff.2
Param. Time [s] (ictr, imv, iud) Time [s] (ictr, imv, iud) (Def. (10
Time [s] (ihit, ichit) (ihit, ichit) /BEO) /BEO)
512 0.607 0.588 (one, 14, 6) (3, non-blk) 0.534 (one, 14, 14) (8, blk) 1.13 1.10
5123 247 223 (one, 16, 16) (2, blk) 195 (one, 15, 15) (7, broad) 1.26 1.14
6123 485 370 (one, 16, 16) (15, broad) 331 (one, 15, 4) (16, broad) 1.46 1.11
(a-2) Compiler Option (-opt=0)
Dim. Def. I10-Est. Param. BEO-Opt. Param. Eff.1 Eff.2
Param. Time [s] (ictr, imv, iud) Time [s] (ictr, imv, iud) (Def. (10
Time [s] (ihit, ichit) (ihit, ichit) /BEO) /BEO)
512 9.15 3.73 (one, 14, 6) (3, non-blk) 3.42 (one, 5, 5) (16, blk) 2.67 1.09
1234 102 41.8 (one, 13, 16) (5, blk) 40.8 (one, 6, 14) (5, blk) 2.50 1.02
2345 731 270 (one, 13, 16) (5, blk) 273 (ome, 13, 14) (7, blk) 2.67 0.98

(b) Fujitsu VPP800/63
(b-1) Compiler Option (-05)

Dim. Def. I10-Est. Param. BEO-Opt. Param. Eff.1 Eff.2
Param. Time [s] (ictr, imv, iud) Time [s] (ictr, imv, iud) (Def. (10
Time [s] (ihit, ichit) (ihit, ichit) /BEO) /BEO)
512 0.815 0.771 (red, 2, 1) (16, non-blk) 0.757 (red, 10, 9) (16, blk) 1.07 1.01
5123 718 60.2 (red, 16, 2) (14, non-blk) 60.3 (red, 16, 2) (14, broad) 1.19 0.99
6123 110 92.01 (red, 16, 2) (14, non-blk) 91.9 (red, 16, 4) (14, non-blk) 1.19 1.00
(b-2) Compiler Option (-00)
Dim. Def. I10-Est. Param. BEO-Opt. Param. Eff.1 Eff.2
Param. Time [s] (ictr, imv, iud) Time [s] (ictr, imv, iud) (Def. (10
Time [s] (ihit, ichit) (ihit, ichit) /BEO) /BEO)
123 0.653 0.620 (red, 9, 8) (14, broad) 0.616 (red, 9, 9) (15, blk) 1.06 1.00
512 20.4 18.1 (one, 11, 9) (12, non-blk) 17.9 (red, 10, 9) (16, non-blk) 1.13 1.01
912 107 93.9 (red, 15, 9) (13, non-blk) 93.6 (red, 16, 9) (12, blk) 1.14 1.00

(c) PC Cluster
(c-1) Compiler Option (-fast)

Dim. Def. I10-Est. Param. BEO-Opt. Param. Eff.1 Eff.2
Param. Time [s] (ictr, imv, iud) Time [s] (ictr, imv, iud) (Def. (10
Time [s] (ihit, ichit) (ihit, ichit) /BEO) /BEO)
512 2.88 3.32 (red, 10, 4) (1, blk) 2.68 (red, 5, 2) (1, broad) 1.07 1.00
5123 396 359 (red, 5, 2) (1, non-blk) 366 (one, 5, 1) (1, blk) 1.08 0.98
10123 2804 2497 (red, 5, 2) (1, non-blk) 2526 (red, 5, 3) (1, blk) 1.11 0.98
(c-2) Compiler Option (-00)
Dim. Def. I10-Est. Param. BEO-Opt. Param. Eff.1 Eff.2
Param. Time [s] (ictr, imv, iud) Time [s] (ictr, imv, iud) (Def. (10
Time [s] (ihit, ichit) (ihit, ichit) /BEO) /BEO)
512 3.55 3.45 (one, 13, 11) (7, broad) 3.31 (red, 13, 3) (3, broad) 1.07 1.04
1234 17.6 19.00 (one, 13, 8) (14, broad) 16.7 (red, 5, 8) (4, non-blk) 1.05 1.13
2345 97.4 98.6 (red, 14, 15) (4, non-blk) 84.5 (one, 6, 6) (4, non-blk) 1.15 1.16

23

Table 4
10 and BEO effects for the QR Decomposition Routine on the three kinds of parallel
machines. One second is the unit of execution time.

(a) HITACHI SR8000/MPP
(a-1) Compiler Option (-opt=4)

Dim. Def. 10-Est. Param. BEO-Opt. Param. Eff.1 Eff.2
Param. Time [s] (ibl, iop, isp, Time [s] (ibl, iop, isp, (Def. (10
Time [s] ioo, iso0) ioo, iso0) /BEO) /BEO)
512 0.217 0.290 (6, 4, 8, 4, 8) 0.171 (8,2,2,4,4) 1.26 1.69
5123 391 149 (16, 4, 8, 4, 8) 146 (8,4, 1, 4, 4) 2.67 1.02
6123 762 270 (16, 4, 8, 4, 8) 276 (8,2, 5,2, 8) 2.76 0.97
(a-2) Compiler Option (-opt=0)
Dim. Def. 10-Est. Param. BEO-Opt. Param. Eff.1 Eff.2
Param. Time [s] (ibl, iop, isp, Time [s] (ibl, iop, isp, (Def. (10
Time [s] ioo, iso) ioo, iso) /BEO) /BEO)
512 2.42 1.05 (8,4, 8, 4, 8) 0.982 (8,1, 3, 4, 8) 2.45 1.06
1234 33.9 15.2 (8,4, 8, 4, 8) 16.9 (8,2,3,3,8) 2.00 0.89
2345 240 119 (16, 4, 8, 4, 8) 114 (8,2, 5, 4, 8) 2.10 1.04

(b) Fujitsu VPP800/63
(b-1) Compiler Option (-05)

Dim. Def. 10-Est. Param. BEO-Opt. Param. Eff.1 Eff.2
Param. Time [s] (ibl, iop, isp, Time [s] (ibl, iop, isp, (Def. (10

Time [s] ioo, iso) ioo, iso0) /BEO) /BEO)
512 0.061 0.026 (16, 4, 8, 4, 8) 0.026 (8,1, 5,4, 8) 2.34 1.00
5123 31.3 19.0 (8,4, 8, 4, 8) 18.2 (16,4, 5,1,16) 1.71 1.04
6123 51.4 30.6 (16, 4, 8, 4, 8) 30.2 (8,1, 1, 3, 8) 1.70 1.01

(b-2) Compiler Option (-00)

Dim. Def. 10-Est. Param. BEO-Opt. Param. Eff.1 Eff.2
Param. Time [s] (ibl, iop, isp, Time [s] (ibl, iop, isp, (Def. (10

Time [s] ioo, iso0) ioo, iso0) /BEO) /BEO)
123 0.292 0.290 (3,4, 8,4, 8) 0.152 (8, 1, 3, 3, 4) 1.92 1.90
512 19.6 7.11 (8,4, 8,4, 8) 7.05 (8, 1,3, 4, 8) 2.78 1.00
912 110 40.6 (8,4, 8,4, 8) 40.5 (8, 1,4, 4, 8) 2.71 1.00

(c) PC Cluster
(c-1) Compiler Option (-fast)

Dim. Def. 10-Est. Param. BEO-Opt. Param. Eff.1 Eff.2
Param. Time [s] (ibl, iop, isp, Time [s] (ibl, iop, isp, (Def. (10
Time [s] ioo, iso) ioo, iso) /BEO) /BEO)
512 0.520 0.590 (6,4, 8, 4, 8) 0.466 (3,1,2,1, 3) 1.11 1.26
5123 261 151 (8,4, 8, 4, 8) 152 (8,3,4,4,8) 171 0.99
10123 2017 2079 (8,4, 8, 4, 8) 1320 (16, 4, 16, 3, 4) 1.52 1.57
(c-2) Compiler Option (-00)
Dim. Def. 10-Est. Param. BEO-Opt. Param. Eff.1 Eff.2
Param. Time [s] (ibl, iop, isp, Time [s] (ibl, iop, isp, (Def. (10
Time [s] ioo, iso) ioo, iso0) /BEO) /BEO)
512 1.11 0523 (16,4, 8, 4, 8) 0.532 (16,2, 3,4, 16) 2.08 0.98
1234 12.7 3.60 (8,4, 8, 4, 8) 3.59 (8,2, 6,4, 8) 3.53 1.00
2345 86.0 87.3 (6, 4, 8, 4, 8) 25.4 (8,3, 1,4, 8) 3.38 3.43

24

Table 5
Effect for the Load-Balancer in a Heterogeneous PC Cluster. (4 nodes, Dimension:

8000)
(a) Case of 0 Load in the Master Node.

(Data distribution ratio: Nodel: 23%; Node2: 23%; Node3: 23%; Node4: 31%;)

of Calculated Load-Balancer Load-Balancer Speedup

Eigenvectors OFF [s] ON [s]
100 18.5 18.0 1.02
500 55.4 64.9 0.8
1000 94.6 123 0.7
4000 354 474 0.7
8000 690 935 0.7

(b) Case of 1 Load in the Master Node.
(Data distribution ratio: Nodel: 12%; Node2: 26%; Node3: 27%; Node4: 35%;)

of Calculated Load-Balancer Load-Balancer Speedup

Eigenvectors OFF [s] ON [s]
100 33.5 25.6 1.3
500 108 76.6 14
1000 199 129 1.5
4000 680 468 1.4
8000 1326 915 1.3

(c) Case of 2 Loads in the Master Node.
(Data distribution ratio: Nodel: 9%; Node2: 27%; Node3: 27%; Node4: 37%;)

of Calculated Load-Balancer Load-Balancer Speedup

Eigenvectors OFF [s] ON [s]
100 51.7 32.0 1.6
500 170 90.9 1.8
1000 279 147 1.8
4000 941 534 1.7
8000 2374 1068 2.2

25

