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• Both of convergence (robustness) 
and efficiency (single/parallel) are 
important

• Communications needed
– SpMV (P2P communications, 

MPI_Isend/Irecv/Waitall): Local Data 
Structure with HALO

– Dot-Products (MPI_Allreduce)
 effect of latency

– Preconditioning (up to algorithm)

Parallel (Krylov) Iterative Solvers

• Remedy for Robust Parallel ILU Preconditioner
– Additive Schwartz Domain Decomposition
– HID (Hierarchical Interface Decomposition, based on global 

nested dissection) [Henon & Saad 2007], ext. HID [KN 2010]



Assumptions & Expectations 
towards Post-K/Post-Moore Era

• Post-K (-2020, 2021?)
– Memory Wall
– Hierarchical Memory (e.g. KNL: MCDRAM-DDR)

• Post-Moore (-2025? -2029?)
– High bandwidth in memory and network, Large capacity of 

memory and cache
– Large and heterogeneous latency due to deep hierarchy in 

memory and network
– Utilization of FPGA

• Common Issues
– Hierarchy, Latency (Memory, Network etc.)
– Large Number of Nodes, High concurrency with O(103) 

threads on each node
• under certain constraints (e.g. power, space …)
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App’s & Alg’s in Post-Moore Era
• Compute Intensity -> Data Movement Intensity

– It is very important and helpful for the convergence of 
BDA and HPC to think about algorithms and 
applications in the Post Moore Era.

• Implicit scheme strikes back !: but not straightforward
• Hierarchical Methods for Hiding Latency

– Hierarchical Coarse Grid Aggregation (hCGA) in MG
– Parallel in Space/Time (PiST)

• Comm./Synch. Avoiding/Reducing Algorithms
– Network latency is already a big bottleneck for parallel 

sparse linear solvers (SpMV, Dot Products) 
– Matrix Powers Kernel, Pipelined/Asynchronous CG

• Power-aware Methods
– Approximate Computing, Power Management, FPGA
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Hierarchical Methods for Hiding Latency
5

hCGA in Parallel Multigrid
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Groundwater Flow Simulation with up to 4,096 nodes 
on Fujitsu FX10 (GMG-CG) up to  17,179,869,184 
meshes (643 meshes/core) [KN ICPADS 2014]

Parallel in Space/Time (PiST)
PiST approach is suitable for the Post-Moore 
Systems with a complex and deeply 
hierarchical network that causes large latency.

CGA hCGA

[R.D.Falgout et al. SIAM/SISC 2014]

Comparison between PiST and “Time Stepping” for 
Transient Poisson Equations
Effective if processor# is VERY large

3D: 333 x 4097
8 proc’s in space dir.
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• Communication/Synchronization 
Avoiding/Reducing in Krylov Iterative 
Solvers

• Pipelined CG: Background
• Pipelined CG: Results
• Communication-Computation 

Overlapping
• Summary
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Communication/Synchronization 
Avoiding/Reducing/Hiding 

for Parallel Preconditioned Krylov Iterative Methods

• SpMV
– Overlapping of 

Computations & 
Communications

– Matrix Powers Kernel
• Dot Products

– Pipelined Methods
– Gropp’s Algorith,



Communication Avoiding/Reducing 
Algorithms for Sparse Linear Solvers

utilizing Matrix Powers Kernel
• Matrix Powers Kernel: Ax, A2x, A3x ...
• Krylov Iterative Method without Preconditioning

– Demmel, Hoemmen, Mohiyuddin etc. (UC Berkeley)
• s-step method

– Just one P2P communication for each Mat-Vec during s
iterations. Convergence may become unstable for large s.

• Communication Avoiding ILU0 (CA-ILU0) [Moufawad & 
Grigori, 2013]
– First attempt to CA preconditioning
– Nested dissection reordering for limited geometries (2D FDM)

• Generally, it is difficult to apply Matrix Powers Kernel to 
preconditioned iterative solvers
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• Communication/Synchronization 
Avoiding/Reducing in Krylov Iterative 
Solvers

• Pipelined CG: Background
• Pipelined CG: Results
• Communication-Computation 

Overlapping
• Summary
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Hiding Overhead by Collective 
Comm. in Krylov Iterative Solvers

• Dot Products in Krylov Iterative Solvers
– MPI_Allreduce: Collective Communications
– Large overhead with many nodes

• Pipelined CG [Ghysels et al. 2014]
– Utilization of asynchronous collective communications (e.g. 

MPI_Iallreduce) supported in MPI-3 for hiding such overhead.
– Algorithm is kept, but order of computations is changed
– [Reference] P. Ghysels et al., Hiding global synchronization 

latency in the preconditioned Conjugate Gradient algorithm, 
Parallel Computing 40, 2014

– When I visited LBNL in September 2013, Dr. Ghysels asked 
me to evaluate his idea in my parallel multigrid solvers 
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4 Algorithms [Ghysels et al. 2014]
• Alg.1 Original Preconditioned CG
• Alg.2 Chronopoulos/Gear

– 2 dot products are combined in a single reduction
• Alg.3 Pipelined CG (MPI_Iallreduce)
• Alg.4 Gropp’s asynchronous CG (MPI_Iallreduce)

• Algorithm itself is not different from the original one
– Recurrence Relations: 漸化式

– Order of computation changed -> Rounding errors are 
propagated differently

• Convergence may be affected (not happened in my case)
• update of r= b-Ax needed at every 50 iterations (original paper)
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Original Preconditioned CG (Alg.1)
Original Preconditioned CG (Alg.1)
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Chronopoulos/Gear CG (Alg.2)
2 dot products are combined into a single reduction

Chronopoulos/Gear CG (Alg.2)
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• 2 dot products combined

• si=Api is not computed explicitly: by recurrence
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Pipelined Chronopoulos/Gear
(No Preconditioning)

Pipelined Chronopoulos/Gear (No Precond.)
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products are overlapped with  
SpMV
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Preconditioned Pipelined CG (Alg.3)
Preconditioned Pipelined CG (Alg.3)
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Gropp’s Asynchronous CG (Alg.4)
Smaller Computations than Alg.3

Gropp’s Asynchronous CG (Alg.4)

• Definition of  is different from 
that of Alg.3

W. Gropp, Update on Libraries for Blue Waters.
http://jointlab-pc.ncsa.illinois.edu/events/workshop3/pdf/presentations/Gropp-
Update-on-Libraries.pdf
Presentation Material (not a paper, article)

• Global synchronization of dot 
products are overlapped with  
SpMV and Preconditioning
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Implementation (Alg.4)
!C
!C +--------------+
!C | Delta= (p,s) |
!C +--------------+
!C===

DL0= 0.d0
!$omp parallel do private(i) reduction(+:DL0)

do i= 1, 3*N
DL0= DL0 + P(i)*S(i)

enddo
call MPI_Iallreduce (DL0, Delta, 1, MPI_DOUBLE_PRECISION,            &
&                     MPI_SUM, MPI_COMM_WORLD, req1, ierr)

!C===

!C
!C +----------------+
!C | {q}= [Minv]{s} |
!C +----------------+
!C===

（前処理：省略）

!C===

call MPI_Wait (req1, sta1, ierr)
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Pipelined CR (Conjugate Residuals)
Preconditioned Pipelined CR

• Global synchronization of dot 
products are overlapped with  
SpMV
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Amount of Computations
DAXPY could very smaller than (sophisticated) 

preconditioning

SpMV Precond. Dot 
Prod. DAXPY

1 Original CG 1 1 2+1 3

2 Chronopoulos/
Gear 1 1 2+1 4

3 Pipelined CG 1 1 2+1 8

4 Grppp’s
Algorithm 1 1 2+1 5

Pipelined CR 1 1 2+1 6

+1 for 
residual norm
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• Communication/Synchronization 
Avoiding/Reducing in Krylov Iterative 
Solvers

• Pipelined CG: Background
• Pipelined CG: Results
• Communication-Computation 

Overlapping
• Summary
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GeoFEM/Cube
• Parallel FEM Code (& Benchmarks)
• 3D-Static-Elastic-Linear (Solid Mechanics)
• Performance of Parallel Precond. Iterative Solvers

– 3D Tri-linear Elements
– SPD matrices: CG solver
– Fortran90+MPI+OpenMP
– Distributed Data Structure
– Localized SGS Preconditioning

• Symmetric Gauss-Seidel, Block Jacobi
• Additive Schwartz Domain Decomposition

– Reordering by CM-RCM: RCM
– MPI，OpenMP，OpenMP/MPI Hybrid
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Parallel FEM 3D-2 2323

Overlapped Additive Schwartz 
Domain Decomposition Method
Stabilization of Localized Preconditioning: ASDD

Global Operation
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Reordering for avoiding data 
dependency in IC/ILU computations 

on each MPI process
Elements in “same color” are independent: to be 
parallelized by OpenMP on each MPI process.

64 63 61 58 54 49 43 36

62 60 57 53 48 42 35 28

59 56 52 47 41 34 27 21

55 51 46 40 33 26 20 15

50 45 39 32 25 19 14 10

44 38 31 24 18 13 9 6

37 30 23 17 12 8 5 3

29 22 16 11 7 4 2 1

48 32

31 15

14 62

61 44

43 26

25 8

7 54

53 36

16 64

63 46

45 28

27 10

9 56

55 38

37 20

19 2

47 30

29 12

11 58

57 40

39 22

21 4

3 50

49 33

13 60

59 42

41 24

23 6

5 52

51 35

34 18

17 1

64 63 61 58 54 49 43 36

62 60 57 53 48 42 35 28

59 56 52 47 41 34 27 21

55 51 46 40 33 26 20 15

50 45 39 32 25 19 14 10

44 38 31 24 18 13 9 6

37 30 23 17 12 8 5 3

29 22 16 11 7 4 2 1

1 17 3 18 5 19 7 20

33 49 34 50 35 51 36 52

17 21 19 22 21 23 23 24

37 53 38 54 39 55 40 56

33 25 35 26 37 27 39 28

41 57 42 58 43 59 44 60

49 29 51 30 53 31 55 32

45 61 46 62 47 63 48 64

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

RCM
Reverse Cuthill-Mckee

MC (Color#=4)
Multicoloring

CM-RCM (Color#=4)
Cyclic MC + RCM

24



25

• 4 Types of Algorithms
– Alg.1 Original Preconditioned CG
– Alg.2 Chronopoulos/Gear
– Alg.3 Pipelined CG (MPI_Allreduce, MPI_Iallreduce,)
– Alg.4 Gropp’s asynchronous CG (MPI_Allreduce, 

MPI_Iallreduce)
• Flat MPI，OpenMP/MPI Hybrid with Reordering
• Platform

– Integrated Supercomputer System for Data Analyses & 
Scientific Simulations (Reedbush-U)

– Intel Broadwell-EP 18 cores x 2 sockets x 420 nodes
– Intel Fortran + Intel MPI
– 16 of 18 cores/socket, 384 nodes (= 768 sockets, 12,288 

cores)

Results on Reedbush-U
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• Strong Scaling
• Small

– 256×128×144
nodes (=4,718,592)

– 14,155,776 DOF
– at 384 nodes 

(12,288 cores)
• 8×8×6＝384 

nodes/core
• 1,152 DOF/core

• Medium
– 256×128×288 

nodes (=9,437,184)
– 28,311,552自由度

Results: Number of Iterations
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Results: Speed-Up: Small
Performance of 2 nodes of Flat MPI = 64.0

(4 sockets, 64 cores)

Flat MPI Hybrid

Alg.1 Original PCG
Alg.2 Chronopoulos/Gear
Alg.3 Pipelined CG
Alg.4 Gropp’s CG
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Results: Speed-Up: Medium
Performance of 2 nodes of Flat MPI = 64.0

(4 sockets, 64 cores)

Flat MPI Hybrid

Alg.1 Original PCG
Alg.2 Chronopoulos/Gear
Alg.3 Pipelined CG
Alg.4 Gropp’s CG
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Preliminary Results on IVB Cluster
96x80x64 (491,520) nodes, 1,474,560 DOF
Flat MPI using up to 64 nodes (1,280 cores)
Flat MPI worked well in this case
At 64 nodes, problem size per core is equal to that of “small” case
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Allreduce vs. Iallreduce for Hybrid
Performance of 2 nodes of Flat MPI = 64.0

(4 sockets, 64 cores)
Alg.1 Original PCG
Alg.3 Pipelined CG
Alg.4 Gropp’s CG
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Hybrid vs. Flat MPI for Alg.4
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Results on 768 nodes (12,288 cores) 
of Fujitsu FX10 (Oakleaf-FX)

MPI-3 is not optimized
FX100 has special HW for communication
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• Communication/Synchronization 
Avoiding/Reducing in Krylov Iterative 
Solvers

• Pipelined CG: Background
• Pipelined CG: Results
• Communication-Computation 

Overlapping
• Summary
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Internal Meshes

External (HALO) Meshes
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Internal Meshes

External (HALO) Meshes

Internal Meshes on 
Boundary’s

Mat-Vec operations (SpMV)
• Renumbering: ■⇒■
• Communications of info. on 

external meshes
• Computation of ■ BEFORE 

completion of comm. (comm.-
comp. overlapping)

• Synchronization of 
communications

• Computation of ■



Comm.-Comp. Overlapping
CC-Overlapping 36

Internal Meshes

External (HALO) Meshes

Internal Meshes on 
Boundary’s

call MPI_Isend
call MPI_Irecv

do i= 1, Ninn
(calculations)

enddo

call MPI_Waitall

do i= Ninn+1, Nall
(calculationas)

enddo

With Renumbering



Comm.-Comp. Overlapping
for SpMV

• No effects on SpMV (will be shown later)
• We need certain amount of communications
• Larger communications mean larger computations

– Ratio of communication overhead is small …
– Communication time itself is not so large

37
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OpenMP: Loop Scheduling
!$omp parallel do schedule (kind, [chunk]) 
!$omp do schedule (kind, [chunk]) 

#pragma parallel for schedule (kind, [chunk]) 
#pragma for schedule (kind, [chunk]) 

Kind Description

static
Divide the loop into equal-sized chunks or as equal as possible in the case where the number of 
loop iterations is not evenly divisible by the number of threads multiplied by the chunk size. By 
default, chunk size is loop_count/number_of_threads.Set chunk to 1 to interleave the iterations.

dynamic

Use the internal work queue to give a chunk-sized block of loop iterations to each thread. When a 
thread is finished, it retrieves the next block of loop iterations from the top of the work queue. By 
default, the chunk size is 1. Be careful when using this scheduling type because of the extra 
overhead involved.

guided
Similar to dynamic scheduling, but the chunk size starts off large and decreases to better handle 
load imbalance between iterations. The optional chunk parameter specifies them minimum size 
chunk to use. By default the chunk size is approximately loop_count/number_of_threads.

auto
When schedule (auto) is specified, the decision regarding scheduling is delegated to the compiler. 
The programmer gives the compiler the freedom to choose any possible mapping of iterations to 
threads in the team.

runtime
Uses the OMP_schedule environment variable to specify which one of the three loop-scheduling 
types should be used. OMP_SCHEDULE is a string formatted exactly the same as would appear 
on the parallel construct.
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Strategy [Idomura et al. 2014]
• “dynamic”
• “!$omp master～!$omp end master”

!$omp parallel private (neib,j,k,i,X1,X2,X3,WVAL1,WVAL2,WVAL3)
!$omp&         private (istart,inum,ii,ierr)

!$omp master Communication is done by the master thread (#0)
!C
!C– Send & Recv.
(…)

call MPI_WAITALL (2*NEIBPETOT, req1, sta1, ierr)
!$omp end master

!C                       The master thread can join computing of internal
!C-- Pure Inner Nodes nodes after the completion of communication

!$omp do schedule (dynamic,200) Chunk Size= 200
do j= 1, Ninn
(…)

enddo
!C
!C-- Boundary Nodes Computing for boundary nodes are by all threads

!$omp do default: !$omp do schedule (static)
do j= Ninn+1, N
(…)

enddo

!$omp end parallel

Idomura, Y. et al., Communication-overlap techniques for 
improved strong scaling of gyrokinetic Eulerian code beyond 100k 
cores on the K-computer, Int. J. HPC Appl. 28, 73-86, 2014
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Block 
Diagonal CG
sec./iteration

(1/2)
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• Hybrid
• Small：1003 nodes/proc.
• Large：2003 nodes/proc.
• Overlap: Classical Method
• Number: Chunk Size
• Difference from the 

Original Method

• Oakleaf-FX：FX10
• Reedbush-U：RB
• IVB Cluster：KNSC
• 128 MPI Processes (4.00)
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Block 
Diagonal CG
sec./iteration

(2/2)

CC-Overlapping

• No effects by classical 
overlapping

• Very effective on FX10
– There is a report 

describing significant 
effects of “assist cores 
for communications” on 
Fujitsu’s FX100

FX10: 4,800 nodes

RB： 400 nodes (800 sockets)
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• Communication/Synchronization 
Avoiding/Reducing in Krylov Iterative 
Solvers

• Pipelined CG: Background
• Pipelined CG: Results
• Communication-Computation 

Overlapping
• Summary
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• Pipelined CG, Gropp’s CG
– Effect of hiding collective communication by MPI_Iallreduce

is significant, especially for strong scaling
– Alg.3 ~ Alg.4
– Future works

• Pipelined CR should be also evaluated
– Dr. Ghysels’s recommendation

• Application to Multigrid, HID (Hierarchical Interface Decompotision)
• Evaluation on FX100

• Loop Scheduling for OpenMP
– Effect is significant on FX10
– Detailed profiling needed
– Good target for AT (already done)

Summary



Next Stage …
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Pure Internal Blocks

External (HALO) Meshes

Internal Blocks on 
Boundary’s

• Combined Methods
– Pipelined CG
– ILU/IC
– Comm.-Comp. Overlapping
– Loop Scheduling

• We need separate 
numbering by reordering for 
internal and boundary 
nodes
– More iterations needed
– Blocking could be a remedy

• Coalesced numbering is 
more suitable than 
sequential numbering.
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Coalesced & Sequential Numbering 

color=1 color=2 color=3 color=4 color=5Coloring
(5 colors)
+Ordering

color=1 color=2 color=3 color=4 color=5Coloring
(5 colors)
+Ordering

color=1 color=2 color=3 color=4 color=5

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

2 2 2 2 22 2 2 2 2 3 3 3 3 33 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 8 84 4 4 4 44 4 4 4 4 5 5 5 5 55 5 5 5 5 6 6 6 6 66 6 6 6 6 7 7 7 7 77 7 7 7 7 8 8 8 8 88 8 8 8 81 1 1 1 11 1 1 1 1

Initial Vector

各スレッド上で各スレッド上で
不連続なメモリ不連続なメモリ
アクセス（色のアクセス（色の
順に番号付け）順に番号付け）

スレッド内で連続に番号付けスレッド内で連続に番号付け

Initial Vector

color=1 color=2 color=3 color=4 color=5Coloring
(5 colors)
+Ordering

color=1 color=2 color=3 color=4 color=5

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Coalesced
Good for GPU
Continuous 
numbering in 
each color

Sequential
Good for CPU
Cache is well-
utilized
Continuous 
numbering for 
each thread


