HH 50K

THE UNIVERSITY OF TOKYO

Parallel Iterative Solvers with
Preconditioning in the Post-

Moore Era

Kengo Nakajima
Information Technology Center, The University of Tokyo

First International Workshop on Deepening Performance
Models for Automatic Tuning (DPMAT)
September 7, 2016, Nagoya University

Parallel (Krylov) lterative Solvers

Both of convergence (robustness)
and efficiency (single/parallel) are
important

Communications needed I I

— SpMV (P2P communications,
MPI _Isend/Irecv/Waitall): Local Data —
Structure with HALO

— Dot-Products (MPI_Allreduce)
v effect of latency
— Preconditioning (up to algorithm)

)

Remedy for Robust Parallel ILU Preconditioner
— Additive Schwartz Domain Decomposition

— HID (Hierarchical Interface Decomposition, based on global
nested dissection) [Henon & Saad 2007], ext. HID [KN 2010]

Assumptions & Expectations

towards Post-K/Post-Moore Era
* Post-K (-2020, 20217)
— Memory Wall
— Hierarchical Memory (e.g. KNL: MCDRAM-DDR)

* Post-Moore (-20257 -20297)

— High bandwidth in memory and network, Large capacity of
memory and cache

— Large and heterogeneous latency due to deep hierarchy in
memory and network

— Utilization of FPGA

« Common Issues
— Hierarchy, Latency (Memory, Network etc.)

— Large Number of Nodes, High concurrency with O(103)
threads on each node
 under certain constraints (e.g. power, space ...)

App’s & Alg’s in Post-Moore Era

Compute Intensity -> Data Movement Intensity

— It is very important and helpful for the convergence of
BDA and HPC to think about algorithms and
applications in the Post Moore Era.

Implicit scheme strikes back !: but not straightforward

Hierarchical Methods for Hiding Latency
— Hierarchical Coarse Grid Aggregation (hCGA) in MG
— Parallel in Space/Time (PiST)

Comm./Synch. Avoiding/Reducing Algorithms

— Network latency is already a big bottleneck for parallel
sparse linear solvers (SpMV, Dot Products)

— Matrix Powers Kernel, Pipelined/Asynchronous CG

Power-aware Methods
— Approximate Computing, Power Management, FPGA

Hierarchical Methods for Hiding Latency

BEEEEEEEEEE CGARTITIITITITT glefc7. W PiST approach is suitable for the Post-Moore
l........... Systems with a complex and deeply

hierarchical network that causes large latency.
EEEEEEEEEEEE !Illllllllll

| | Initial Space-Time Guess‘ Iterate Converge
DDDDDDDDDDDD i ¢ ’ K/ ’
!
. . = - g o A
= | i Spac,e EE-: Sgace pace
15_0. Comparison between PiST and “Time Stepping” for
® CGA Transient Poisson Equations
125 ~“O-hCGA - Effective if processor# is VERY large
x1.61 . T T T T rrr T T T rrrT T T T
g 100 ® 22}
Lo g
75 | ° § 161
e 6 o @
. . E 8r
5.0 L E=] X X
100 1000 10000 100000 . z:':‘e SIEPE::"I? 3
CORE# ~-V-cycle. F-FCF SD 337 x 4097 di
Groundwater Flow Simulation with up to 4,096 nodes o B s LW proc’s in,space dir.

-

8 64 128 256 512 1024 2048 4098
processors

[R.D.Falgout et al. SIAM/SISC 2014]

on Fujitsu FX10 (GMG-CG) up to 17,179,869,184
meshes (643 meshes/core) [KN ICPADS 2014]

App’s & Alg’s in Post-Moore Era

Compute Intensity -> Data Movement Intensity

— It is very important and helpful for the convergence of BDA
and HPC to think about algorithms and applications in the
Post Moore Era.

Implicit scheme strikes back !: but not straightforward

Hierarchical Methods for Hiding Latency
— Hierarchical Coarse Grid Aggregation (hCGA) in MG
— Parallel in Space/Time (PiST)

Comm./Synch. Avoiding/Reducing Algorithms

— Network latency is already a big bottleneck for parallel
sparse linear solvers (SpMV, Dot Products)

— Matrix Powers Kernel, Pipelined/Asynchronous CG

Power-aware Methods
— Approximate Computing, Power Management, FPGA

» Communication/Synchronization
Avoiding/Reducing in Krylov Iterative
Solvers

* Pipelined CG: Background

* Pipelined CG: Results

« Communication-Computation
Overlapping

 Summary

Communication/Synchronization
Avoiding/Reducing/Hiding

for Parallel Preconditioned Krylov Iterative Methods

° SpMV Algorithm 1 Preconditioned CG
— Over|apping of 1: 79 :=b— Axg; wug:=Mrg: po:i= ug
. 2: for:=0,... do
Computations & 3 s Ab
Communications 4 = (riu) /(s.pi)
. 2! Ty = I; T ap;
— Matrix Powers Kernel 6 r s
7: Uiyl = ;"1\[_11','4_1
» Dot Products 8 f= (rigi, wiga) / (i, wi)
— Pipelined Methods % Digl = Uil PP
10: end for

— Gropp’s Algorith,

Communication Avoiding/Reducing
Algorithms for Sparse Linear Solvers
utilizing Matrix Powers Kernel

Matrix Powers Kernel: Ax, A2x, A3x ...

Krylov lterative Method without Preconditioning
— Demmel, Hoemmen, Mohiyuddin etc. (UC Berkeley)

s-step method

— Just one P2P communication for each Mat-Vec during s
iterations. Convergence may become unstable for large s.

Communication Avoiding ILUO (CA-ILUO) [Moufawad &
Grigori, 2013]

— First attempt to CA preconditioning

— Nested dissection reordering for limited geometries (2D FDM)

Generally, it is difficult to apply Matrix Powers Kernel to
preconditioned iterative solvers

» Communication/Synchronization
Avoiding/Reducing in Krylov Iterative
Solvers

* Pipelined CG: Background

* Pipelined CG: Results

« Communication-Computation
Overlapping

 Summary

11

Hiding Overhead by Collective
Comm. in Krylov lterative Solvers

* Dot Products in Krylov Iterative Solvers
— MPI_Allreduce: Collective Communications
— Large overhead with many nodes

* Pipelined CG [Ghysels et al. 2014]

— Ultilization of asynchronous collective communications (e.qg.
MPI_lallreduce) supported in MPI-3 for hiding such overhead.

— Algorithm is kept, but order of computations is changed

— [Reference] P. Ghysels et al., Hiding global synchronization
latency in the preconditioned Conjugate Gradient algorithm,
Parallel Computing 40, 2014

— When | visited LBNL in September 2013, Dr. Ghysels asked
me to evaluate his idea in my parallel multigrid solvers

12

4 Algorithms [Ghysels et al. 2014]

Alg.1 Original Preconditioned CG
Alg.2 Chronopoulos/Gear

— 2 dot products are combined in a single reduction

Alg.3 Pipelined CG (MPI_lallreduce)
Alg.4 Gropp’s asynchronous CG (MPI_lallreduce)

Algorithm itself is not different from the original one

— Recurrence Relations: #i{t =

— Order of computation changed -> Rounding errors are
propagated differently
« Convergence may be affected (not happened in my case)
« update of r= b-Ax needed at every 50 iterations (original paper)

Original Preconditioned CG (Alg.1)

Original Preconditioned CG (Alqg.1)

1: g :'= h— Aq.l'(): up = :\[_11'(): Po = U
2: for:=0,... do
3: s = Ap; —
” Pi S; = Ap,
4. o= (rj,ui) / (s, pi)
5. | 2ia1 := i + ap; X =X T P
6: I'jii] ‘=13 — (S ., = b— AXi+1 =b- AXi —aiApi
7 Uiyl = :\[_ll'i_{_l —r A .
,, o o == AP =T — &S
& 0= (Ij+1.«'![+1)f' (7. u;)

9: Pit1 «— Ui +),])1
10: end for

13

14

Chronopoulos/Gear CG (Alg.2)

2 dot products are combined into a single reduction

Chronopoulos/Gear CG (Alg.2)

1: 7o :=b— Axg: ug:= Mlrg;: wp:= Aug
2: ag := (1o, ug) / (wo,ug); Bo:=0; ~o:= (ro,uop)
3: for:=0.... do
4: pii=u; + PBipi—a S =AU + S, P =U; + 5P < S, = Ap,
Z Si 1= Wi T i"”i—l Xip1 = X + a5 P
: Tiyl = Iy Qi Pi
7 Titl ‘= T — Q4S; hi = b- AXi+1 =b- AXi — G, Api
8: Ujypy = ;“]_ll'i+1 :rl_alApl :ri—aisi
9: Wiyl .= fll!,‘_l_l
10: | Yig1 = (Fig1, Uig1) -
B e 2 dot products combined
11: 0 . (“ F+1'“'l+1)
12: [Biy1 = Yiv1/ Vi

13: ig1 = Yit1/ (0 = Biv1viy1/)
14: end for

« S;=Ap, is not computed explicitly: by recurrence

15

Pipelined Chronopoulos/Gear
(No Preconditioning)

Pipelined Chronopoulos/Gear (No Precond.)
1: g := h— 4411'()1 wo = hll'()

fri=0_ do * Global synchronization of dot
T U products are overlapped with

) = (0. 1)

=i SpMV
it 2 > 0 then)
))1 = "‘,-,'_./'/"”‘_1: Q; = “;.Ij/ (() r— A,)).I'A‘nif‘i(_li_l]

e
—

else
9: B =0; o3:=%/0
10: | end if
b Zi «— Q; Bizi_ _ _ _
71 (jz+ lf'. | u|—r|,W|—AU,—Ar,
12 S; = Wy -+ ‘-))i"-'-i.—l
13: p; =71 + Bipi-1 Ar,, = AL - AS; = W, =W, - AS,
14: Tip1 = Ti T Qs As; = Aw;, + B As,_ = zi(: As, = A'p,)= Aw, + Bz,
15: Titl = T§ — Q¢S 5
16: Wit] = Wi — Gz 0 = AWi =A f

17: end for =r—a,Ap, =T — a5

6

Preconditioned Pipelined CG (Alg.3)

Preconditioned Pipelined CG (Alqg.3)

T = b — flJ.‘oI o -— ;\[_1‘]'01 wo = flllo
2: fori=0,... do

1
3 [= (e un) « Global synchronization of dot
N — products are overlapped with

m; = | w;

o |z A, SpMV and Preconditioning

1f 2 >0 then

Bi = vi/vi—1: i =i/ (0 — Bivi/ i1

9: | else

10: B i=0; o5 =%l

o TR 7= () = (Mu.u) = (1.0)

13: g; := m; + Pigi—1 0, = (l\/l _lAui,ui)NI = (Aui,ui): (Wi»ui)

Wi et B M, = MG =M s S U ~u—ag, (6=Ms)
16 Tipy 1= T+ o M7s, =M"w +BM"'s; =q,, =M"w + 50,

17: Tiq1 = T'i — 04 8; Au. , =AU —o,Aq => W, =W, —;Aq;

18: Ujp] = Ui — Q;

19 Wiy] = W — Q24 AqI =AM _IWi —|—ﬁi Aqi—l =7, = Ami +/Bizi_1

20: end for (mi =M"'w.=M"Au. =M'AM 'r, z, = Aqi)

7

Gropp’s Asynchronous CG (Alg.4)
Smaller Computations than Alg.3

Gropp’s Asynchronous CG (Alg.4)

1: 79 1= b — fl.l'()i g = ;‘?\[—11'()1 Po = Up. S = fl]')()l Yo = (:I'(). any

2: fori=20,... do

i A * Definition of 6 is different from
D: oy = -‘,,-f/fj that Of A|g3

6: Tip] = Ij T Q4p;

7: Tig1 ‘= Tj — (S

8: Ujpy .= U — OG(;

o | = iwi)) e (Global synchronization of dot

10: Wigl «— flll,‘+1

| By o= i1/ products are overlapped with
AR SpMV and Preconditioning
9. 23+1 - i+1 Hi+1-1

14: end for

W. Gropp, Update on Libraries for Blue Waters.
http://jointlab-pc.ncsa.illinois.edu/events/workshop3/pdf/presentations/Gropp-
Update-on-Libraries.pdf

Presentation Material (not a paper, article)

&call MPI_lallreduce (DLO, Delta, 1

!C:::

16

IC + :
IC | {a}l= [Minv]{s} |
IC + :
!C:::

(ATALEE : HHBR)

!C:::

call MPI_Wait (reql, stal,

Implementation (Alg.4)

ierr)

ern-HRC
pROR _
N n
1C
IC =
IC | Delta= (p,s) |
IC =
' ——
DLO= 0. d0
I$omp parallel do private(i) reduction(+:DLO)
do i=1, 3N
DLO= DLO + P(i)*S(i)
enddo

MPT_DOUBLE_PRECISION,
MPI_SUM, MPI_COMM_WORLD, reql,

ierr)

Gropp’s Asynchronous CG (Alg.4)

1: 79 ;= b— Axo;

Uy = .-11[71}'02

2: for:=10.... do

10:
11:
12:
13:

0 = (pi, si)
qi = ;\f_lh‘,‘_
('1,‘ = A,l/')‘

200, O o

Tiy] = T + Q;p;

Titl ‘= Tj — (454

Uiyl = Ui — O G;
Yit1 = (Tit1, Uit1)
Wig] = *'1”i+l

Bit1 := Yit1/ Vi

Pi+1 1= Uiy1 + Biy1Pi
8i4i = Wi P58

14: end for

Po ‘= ug,

so = Apo;

Yo := (70, uo)

18

Pipelined CR (Conjugate Residuals)

Preconditioned Pipelined CR
ro :=b— Axg; wug:= M Yrg; wo = Aug
- for:=20.... do

1T 2 > 0 then

Bi == i/vi—1: @ =i/ (0 — Bivi/ai—1)
9: |else
10: 'f, =1 o= ‘;-.,'/(5
11: |end if
12 zi ' =n; + PBizi—1]]
13 i i=mi + Bigiot * Global synchronization of dot

14: p; = Uu; + Bipi—1

Ry products are overlapped with
16: Uiy = U; — ;Q; SpMV

LE: Wig] = Wiy — 24
18: end for

5)
6: n; = Am;
7
8

Amount of Computations

DAXPY could very smaller than (sophisticated)
preconditioning

20

Original CG

Chronopoulos/
Gear

3 Pipelined CG

4 ©rppps
Algorithm

Pipelined CR

2+1

2+1

2+1

2+1

+1 for
residual norm

» Communication/Synchronization
Avoiding/Reducing in Krylov Iterative
Solvers

* Pipelined CG: Background

* Pipelined CG: Results

« Communication-Computation
Overlapping

 Summary

22

=1

@H-HPE GeoFEM/Cube

‘.

« Parallel FEM Code (& Benchmarks)
« 3D-Static-Elastic-Linear (Solid Mechanics)
 Performance of Parallel Precond. lterative Solvers

— 3D Tri-linear Elements ‘ Z Uriform Distbuted Force in
— SPD matrices: CG solver 00 @YY, I e 8

— Fortran90+MPI+OpenMP
— Distributed Data Structure

— Localized SGS Preconditioning(NZ_;'z)f?clgr‘:i'ants (N7 1) eloments

Ny nodes ——»

U,=0 @ x=Xin

« Symmetric Gauss-Seidel, Block Jacobi LT - y
» Additive Schwartz Domain Decomposition U,20 @ 22Z, /:NX_”e.ements

— Reordering by CM-RCM: RCM x
— MPI, OpenMP, OpenMP/MPI Hybrid

N, nodes

Overlapped Additive Schwartz | ::

Domain Decomposition Method
Stabilization of Localized Preconditioning: ASDD

Global Operation
Mz=r

ocal Operation

-1 -1
Lo = MQ1 o, Zo = M92 I,

Global Nesting Correction: Repeating -> Stable

N _nd _1 n-1 n-1
ZQ1 B ZQI T MQI (rQI —MQI ZQ1 _MF1 ZFI) Ql <4l Q2

n

_on-l -1 n-1 n-1
Zo, =2y +Mg (I, —Mg 2o =M 217) I I

Parallel FEM 3D-2 23

Reordering for avoiding data
dependency in IC/ILU computations

on each MPI process

Elements in “same color” are independent: to be
parallelized by OpenMP on each MPI process.

666600 66606668
DHOVDOOO 0098 DONE
190000UE| 08088000 | 000800
6000006
0000006
008006

Results on Reedbush-U

« 4 Types of Algorithms
— Alg.1 Original Preconditioned CG
— Alg.2 Chronopoulos/Gear
— Alg.3 Pipelined CG (MPI_Allreduce, MPI_lallreduce,)

— Alg.4 Gropp’s asynchronous CG (MPI_Allreduce,
MPI_lallreduce)

* Flat MPI, OpenMP/MPI Hybrid with Reordering

o Platform

— Integrated Supercomputer System for Data Analyses &
Scientific Simulations (Reedbush-U)

— Intel Broadwell-EP 18 cores x 2 sockets x 420 nodes
— Intel Fortran + Intel MPI

— 16 of 18 cores/socket, 384 nodes (= 768 sockets, 12,288
cores)

26

Results: Number of Iterations

« Strong Scaling 800
+ Small | N A 1
— 256 X 128 x 144 LA i
nodes (=4,718,592) ¢ S, A A 3
— 14,155,776 DOF ® 600 5 O
— at 384 nodes £ ° ®
(12,288 cores) 500 ® @ SSmalFiatMPI
« 8x8xXx6=384 QSma.II: Hybrld
nodesicors et
. 1.152 DOF/core 400 b
. M d 0 2048 4096 6144 8192 10240 12288
edium CORE#
— 256 X 128 X 288

nodes (=9,437,184)
— 28,311,552 HE

Results: Speed-Up: Small

(4 sockets, 64 cores)

10000
O Alg.1 i
® Alg.2 I
A Alg.3 8000
A Alg4 [
|deal 5% 6000
_6 S
8 .
é% 4000 .

2048 4096 6144 8192 10240 12288

CORE#

Performance of 2 nodes of Flat MPIl = 64.0

Alg.1 Original PCG
Alg.2 Chronopoulos/Gear
Alg.3 Pipelined CG
Alg.4 Gropp’s CG
O Alg.1
® Alg.2
A - Alg.3
A Alg4
| —Ideal x
A
A o
o O ?

%
0 L/

2048 4096 6144 8192 10240 12288

CORE#

Results: Speed-Up: Medium
Performance of 2 nodes of Flat MPI = 64.0

(4 sockets, 64 cores)

O Alg.1
® Alg.2
A Alg.3
A Alg4

—Ideal a :g_

S

Q

(]

Q

7]

2048 4096 6144 8192 10240 12288

CORE#

Alg.1 Original PCG
Alg.2 Chronopoulos/Gear
Alg.3 Pipelined CG
Alg.4 Gropp’s CG
o Alg.1 A
® Alg.2
A - Alg.3
[A Alg.4
L —— Ideal A

2048 4096 6144 8192 10240 12288

CORE#

28

29

Preliminary Results on IVB Cluster

96x80x64 (491,520) nodes, 1,474,560 DOF
Flat MPI using up to 64 nodes (1,280 cores)

Flat MPIl worked well in this case
At 64 nodes, problem size per core is equal to that of “small” case

Speed-Up (20-1,280 cores) Relative Performance to

Alg.1 (Original)

1500 160
i O Alg.1 ® Alg.2 . i
1250 A Alg.3 A Alg.4 &\o’
§_1ooo | / § [A %
i [A i A JAN
S 750 | A © (Ea 120
o [- o
- s 7 n
©
o
o

100& * A

250
;.‘(®Alg2 AAg3 AAlg4
0 80

0 160 320 480 640 800 960 1120 1280 0 160 320 480 640 800 960 1120 1280
CORE# CORE#

30

Allreduce vs. lallreduce for Hybrid

Performance of 2 nodes of Flat MPI = 64.0
(4 sockets, 64 cores)

IAR: MPI_lallreduce ﬁ:g-; g_”g'lf‘a'dpgg
_ g. ipeline
AR : MPI_Allreduce Alg4 Gropp's CG
10000 10000
[0 Alg.1 [0 Alg.1 A
A Alg.3-IAR A Alg.3-IAR
8000 [A Alg.4-IAR 8000 A Alg.4-1AR
| — Ideal | — Ideal
L ¢ Alg.3-AR Ao L ¢ Alg.3-AR A
6000 |- ¢ Alg.4-AR i D 6000 - & Alg.4-AR
3 !
Q
o 9
O
4000 A g S 4000 | A ®
2000 2000 |
0 Q/ 0 &(.............. —— ——
2048 4096 6144 8192 10240 12288 0 2048 4096 6144 8192 10240 12288

CORE# CORE#

31

Hybrid vs. Flat MPI for Alg.4

Hybrid/Flat MPI Ratio

4.00

3.00
2.00

1.00

0.00

[| @ Alg.4-Small ¢
| | ®Alg.4-Medium
O
O
o0 ® o ®

0 2048 4096 6144 8192 10240 12288

COREH#

2

Results on 768 nodes (12,288 cores)

of Fujitsu FX10 (Oakleaf-FX)

MPI-3 is not optimized
FX100 has special HW for communication

1.80
1.60
1.40
1.20

§ 1.00 -
0.80 -
0.60 - =
0.20 | m Small: Hybrid
0.00 : —

Alg.1 Alg.2 Alg.3-IAR Alg.3-AR Alg.4-IAR Alg.4-AR
Algorithms

» Communication/Synchronization
Avoiding/Reducing in Krylov Iterative
Solvers

* Pipelined CG: Background

* Pipelined CG: Results

« Communication-Computation
Overlapping

* Summary

CC-Overlapping

Comm.-Comp. Overlapping

. Internal Meshes

External (HALO) Meshes

34

CC-Overlapping

Comm.-Comp. Overlapping

Internal Meshes

External (HALO) Meshes

Internal Meshes on
Boundary’s

Mat-Vec operations (SpMV)

Renumbering: M=
Communications of info. on
external meshes
Computation of M BEFORE
completion of comm. (comm.-
comp. overlapping)
Synchronization of
communications
Computation of

35

CC-Overlapping 36

Comm.-Comp. Overlapping

. Internal Meshes

External (HALO) Meshes

Internal Meshes on
Boundary’s

With Renumbering

call MPI_Isend
call MPI Irecv

do i= 1, Ninn
(calculations)
enddo

call MPI Waitall

do i= Ninn+1, Nall
(calculationas)
enddo

Comm.-Comp. Overlapping
for SpMV

* No effects on SpMV (will be shown later)
 \WWe need certain amount of communications

« Larger communications mean larger computations
— Ratio of communication overhead is small ...
— Communication time itself is not so large

37

38

OpenMP: Loop Scheduling

1Somp parallel do schedule (kind, [chunk])
1$Somp do schedule (kind, [chunk])

#pragma parallel for schedule (kind, [chunk])
#pragma for schedule (kind, [chunk])

Kind Description

Divide the loop into equal-sized chunks or as equal as possible in the case where the number of
static loop iterations is not evenly divisible by the number of threads multiplied by the chunk size. By
default, chunk size is loop _count/number_of threads.Set chunk to 1 to interleave the iterations.

Use the internal work queue to give a chunk-sized block of loop iterations to each thread. When a
thread is finished, it retrieves the next block of loop iterations from the top of the work queue. By
default, the chunk size is 1. Be careful when using this scheduling type because of the extra
overhead involved.

dynamic

Similar to dynamic scheduling, but the chunk size starts off large and decreases to better handle
guided load imbalance between iterations. The optional chunk parameter specifies them minimum size
chunk to use. By default the chunk size is approximately loop_count/number_of threads.

When schedule (auto) is specified, the decision regarding scheduling is delegated to the compiler.
auto The programmer gives the compiler the freedom to choose any possible mapping of iterations to
threads in the team.

Uses the OMP_schedule environment variable to specify which one of the three loop-scheduling
runtime | types should be used. OMP_SCHEDULE is a string formatted exactly the same as would appear
on the parallel construct.

39

Strategy [ldomura et al. 2014]
e “dynamic”
e “I1$omp master~!1%omp end master”

1Somp parallel private gneib,j,k,i,Xl,X2,X3,WVAL1,WVAL2,WVAL3)

1Somp& private (istart,inum,ii,ierr)
Egomp master Communication is done by the master thread (#0)

IC— Send & Recv.

call MPI_WAITALL (2*NEIBPETOT, reql, stal, ierr)
1$omp end master

IC The master thread can join computing of internal
1C-- Pure Inner Nodes nodes after the completion of communication

1$omp do schedule (dynamic,200) Chunk Size= 200

do j= 1, Ninn
g.)
enddo

1C
1C-- Boundary Nodes Computing for boundary nodes are by all threads
I$omp do _ i default: '$omp do schedule (static)
do jJ= Ninn+l, N
€
enddo

1Somp end parallel

Idomura, Y. et al., Communication-overlap techniques for
improved strong scaling of gyrokinetic Eulerian code beyond 100k
cores on the K-computer, Int. J. HPC Appl. 28, 73-86, 2014

CC-Overlapping

Block
Diagonal CG

sec./iteration
(1/2)

* Hybrid

Speed-up (%)

« Small : 1003 nodes/proc.
« Large : 2003 nodes/proc.

« QOverlap: Classical Method

« Number: Chunk Size

 Difference from the
Original Method

 Qakleaf-FX : FX10
« Reedbush-U : RB

 |VB Cluster : KNSC
« 128 MPI Processes

Speed-up (%)

10.00 [
8.00 |
6.00
a.00 |
2.00 |
0.00 |
(2.00) |

(4.00) L

10.00

8.00

6.00 |
4.00
2.00 |
0.00 |
[Overlap 5

(2.00) |

(4.00) L

40

ap 50 100 200 300 400 500

mFX10-128-S ®mRB-128-S mKNSC-128-S

mFX10-128-L ®RB-128-L = KNSC-128-L

CC-Overlapping

Block
Diagonal CG

sec./iteration
(2/2)

* No effects by classical
overlapping

* Very effective on FX10

— There is a report
describing significant
effects of “assist cores
for communications” on
Fujitsu’'s FX100

Speed-up (%)

Speed-up (%)

12.00

10.00 |
8.00
6.00
4.00
2.00
0.00 |
(2.00) |

(4.00) L

RB: 400 nodes (800 sockets)

8.00 |

12.00

10.00

6.00 |

4.00 }

__llllﬁl-i[

2.00

0.00

(2.00) }

(4.00) L

FX10: 4,800 nodes

41

:Overlap

50 100 200 300 400

500

= FX10-4800-L m FX10-4800-S

Overlap

100 200 300

500

= RB-400-L m RB-400-S

» Communication/Synchronization
Avoiding/Reducing in Krylov Iterative
Solvers

* Pipelined CG: Background

* Pipelined CG: Results

« Communication-Computation
Overlapping

 Summary

Summary
* Pipelined CG, Gropp’'s CG

— Effect of hiding collective communication by MPI _lallreduce
IS significant, especially for strong scaling

— Alg.3 ~ Alg.4
— Future works

 Pipelined CR should be also evaluated
— Dr. Ghysels’s recommendation

 Application to Multigrid, HID (Hierarchical Interface Decompotision)
« Evaluation on FX100

* Loop Scheduling for OpenMP
— Effect is significant on FX10
— Detailed profiling needed
— Good target for AT (already done)

43

44

Next Stage ...

 Combined Methods
— Pipelined CG
— ILU/IC
— Comm.-Comp. Overlapping
— Loop Scheduling

 We need separate
numbering by reordering for
iInternal and boundary
nodes

— More iterations needed
— Blocking could be a remedy I:l Pure Internal Blocks
« Coalesced numbering is

more suitable than
)] Internal Blocks on
sequential numbering. Boundary's

D External (HALO) Meshes

45

Coalesced & Sequential Numbering

Coalesced
Good for GPU

Continuous
numbering in
each color

Sequential
Good for CPU
Cache is well-

utilized
Continuous
numbering for
each thread

Initial Vector

\

Coloring

color=1 color=2 color=3 color=4 color=5
(5 colors)
+QOrdering *
color=1 color=2 color=3 color=4 color=5
1/2(3|4|5|6/7|8| |1/2/3|4|5|6/7(8| |1|2/3|4/5|6|7|8| |1|12|3|4|5|6|7|8| |1|2|3|4|5|6|7|8
Initial Vector
Coloring color=1 color=2 color=3 color=4 color=5
(5 colors)
+QOrdering *
color=1 color=2 color=3 color=4 color=5
1[2]3]4[s(6|7[8] 1]2|3]4]5[6|78] 1]2|3]4]5]6|78] 1]2[3}4]5]e|78] [1]2[3]4]s]e]7 |
\ Y
1[1)1/1)1][2]2[2[2]2) 3[3[3[3[3]| [4]4]4]4]4| 5/5]5]515 [€[[6[66] |7]7]7]7]7| EIEEIEE

