
Parallel Iterative Solvers with
Preconditioning in the Post-

Moore Era
Kengo Nakajima

Information Technology Center, The University of Tokyo

First International Workshop on Deepening Performance
Models for Automatic Tuning (DPMAT)
September 7, 2016, Nagoya University

2

• Both of convergence (robustness)
and efficiency (single/parallel) are
important

• Communications needed
– SpMV (P2P communications,

MPI_Isend/Irecv/Waitall): Local Data
Structure with HALO

– Dot-Products (MPI_Allreduce)
 effect of latency

– Preconditioning (up to algorithm)

Parallel (Krylov) Iterative Solvers

• Remedy for Robust Parallel ILU Preconditioner
– Additive Schwartz Domain Decomposition
– HID (Hierarchical Interface Decomposition, based on global

nested dissection) [Henon & Saad 2007], ext. HID [KN 2010]

Assumptions & Expectations
towards Post-K/Post-Moore Era

• Post-K (-2020, 2021?)
– Memory Wall
– Hierarchical Memory (e.g. KNL: MCDRAM-DDR)

• Post-Moore (-2025? -2029?)
– High bandwidth in memory and network, Large capacity of

memory and cache
– Large and heterogeneous latency due to deep hierarchy in

memory and network
– Utilization of FPGA

• Common Issues
– Hierarchy, Latency (Memory, Network etc.)
– Large Number of Nodes, High concurrency with O(103)

threads on each node
• under certain constraints (e.g. power, space …)

3

App’s & Alg’s in Post-Moore Era
• Compute Intensity -> Data Movement Intensity

– It is very important and helpful for the convergence of
BDA and HPC to think about algorithms and
applications in the Post Moore Era.

• Implicit scheme strikes back !: but not straightforward
• Hierarchical Methods for Hiding Latency

– Hierarchical Coarse Grid Aggregation (hCGA) in MG
– Parallel in Space/Time (PiST)

• Comm./Synch. Avoiding/Reducing Algorithms
– Network latency is already a big bottleneck for parallel

sparse linear solvers (SpMV, Dot Products)
– Matrix Powers Kernel, Pipelined/Asynchronous CG

• Power-aware Methods
– Approximate Computing, Power Management, FPGA

4

Hierarchical Methods for Hiding Latency
5

hCGA in Parallel Multigrid

5.0

7.5

10.0

12.5

15.0

100 1000 10000 100000

se
c.

CORE#

CGA
hCGA

x1.61

Groundwater Flow Simulation with up to 4,096 nodes
on Fujitsu FX10 (GMG-CG) up to 17,179,869,184
meshes (643 meshes/core) [KN ICPADS 2014]

Parallel in Space/Time (PiST)
PiST approach is suitable for the Post-Moore
Systems with a complex and deeply
hierarchical network that causes large latency.

CGA hCGA

[R.D.Falgout et al. SIAM/SISC 2014]

Comparison between PiST and “Time Stepping” for
Transient Poisson Equations
Effective if processor# is VERY large

3D: 333 x 4097
8 proc’s in space dir.

App’s & Alg’s in Post-Moore Era
• Compute Intensity -> Data Movement Intensity

– It is very important and helpful for the convergence of BDA
and HPC to think about algorithms and applications in the
Post Moore Era.

• Implicit scheme strikes back !: but not straightforward
• Hierarchical Methods for Hiding Latency

– Hierarchical Coarse Grid Aggregation (hCGA) in MG
– Parallel in Space/Time (PiST)

• Comm./Synch. Avoiding/Reducing Algorithms
– Network latency is already a big bottleneck for parallel

sparse linear solvers (SpMV, Dot Products)
– Matrix Powers Kernel, Pipelined/Asynchronous CG

• Power-aware Methods
– Approximate Computing, Power Management, FPGA

6

7

• Communication/Synchronization
Avoiding/Reducing in Krylov Iterative
Solvers

• Pipelined CG: Background
• Pipelined CG: Results
• Communication-Computation

Overlapping
• Summary

8

Communication/Synchronization
Avoiding/Reducing/Hiding

for Parallel Preconditioned Krylov Iterative Methods

• SpMV
– Overlapping of

Computations &
Communications

– Matrix Powers Kernel
• Dot Products

– Pipelined Methods
– Gropp’s Algorith,

Communication Avoiding/Reducing
Algorithms for Sparse Linear Solvers

utilizing Matrix Powers Kernel
• Matrix Powers Kernel: Ax, A2x, A3x ...
• Krylov Iterative Method without Preconditioning

– Demmel, Hoemmen, Mohiyuddin etc. (UC Berkeley)
• s-step method

– Just one P2P communication for each Mat-Vec during s
iterations. Convergence may become unstable for large s.

• Communication Avoiding ILU0 (CA-ILU0) [Moufawad &
Grigori, 2013]
– First attempt to CA preconditioning
– Nested dissection reordering for limited geometries (2D FDM)

• Generally, it is difficult to apply Matrix Powers Kernel to
preconditioned iterative solvers

9

10

• Communication/Synchronization
Avoiding/Reducing in Krylov Iterative
Solvers

• Pipelined CG: Background
• Pipelined CG: Results
• Communication-Computation

Overlapping
• Summary

11

Hiding Overhead by Collective
Comm. in Krylov Iterative Solvers

• Dot Products in Krylov Iterative Solvers
– MPI_Allreduce: Collective Communications
– Large overhead with many nodes

• Pipelined CG [Ghysels et al. 2014]
– Utilization of asynchronous collective communications (e.g.

MPI_Iallreduce) supported in MPI-3 for hiding such overhead.
– Algorithm is kept, but order of computations is changed
– [Reference] P. Ghysels et al., Hiding global synchronization

latency in the preconditioned Conjugate Gradient algorithm,
Parallel Computing 40, 2014

– When I visited LBNL in September 2013, Dr. Ghysels asked
me to evaluate his idea in my parallel multigrid solvers

12

4 Algorithms [Ghysels et al. 2014]
• Alg.1 Original Preconditioned CG
• Alg.2 Chronopoulos/Gear

– 2 dot products are combined in a single reduction
• Alg.3 Pipelined CG (MPI_Iallreduce)
• Alg.4 Gropp’s asynchronous CG (MPI_Iallreduce)

• Algorithm itself is not different from the original one
– Recurrence Relations: 漸化式

– Order of computation changed -> Rounding errors are
propagated differently

• Convergence may be affected (not happened in my case)
• update of r= b-Ax needed at every 50 iterations (original paper)

13

Original Preconditioned CG (Alg.1)
Original Preconditioned CG (Alg.1)

iiiiii

iiiii

iiii

ii

srApr
ApAxbAxbr

pxx
Aps
















11

1

14

Chronopoulos/Gear CG (Alg.2)
2 dot products are combined into a single reduction

Chronopoulos/Gear CG (Alg.2)

iiiiii

iiiii

iiii

iiiiiiiiii

srApr
ApAxbAxbr

pxx
ApspupsAus



















11

1

1,

• 2 dot products combined

• si=Api is not computed explicitly: by recurrence

15

Pipelined Chronopoulos/Gear
(No Preconditioning)

Pipelined Chronopoulos/Gear (No Precond.)

 

iiiiii

iii

iiiiiiiiii

iiiiiiii

iiiii

srApr
rAAwq

zAwpAAszAsAwAs

AswwAsArAr
ArAuwru



















2
1

2
1

11

,

• Global synchronization of dot
products are overlapped with
SpMV

16

Preconditioned Pipelined CG (Alg.3)
Preconditioned Pipelined CG (Alg.3)

     
     

 

 iiiiii

iiiiiiii

iiiiiiii

iiiiiiii

iiiiiiiiii

iiiiMiii

iiiiMiii

AqzrAMMAuMwMm

zAmzAqwAMAq

AqwwAqAuAu
qwMqsMwMsM

sMqquusMrMrM

uwuAuuAuM

uruMuuu







































,

,,,

,,,

1111
11

1
11

1
1

11
1

1

1
1

11
1

1

1












• Global synchronization of dot
products are overlapped with
SpMV and Preconditioning

17

Gropp’s Asynchronous CG (Alg.4)
Smaller Computations than Alg.3

Gropp’s Asynchronous CG (Alg.4)

• Definition of  is different from
that of Alg.3

W. Gropp, Update on Libraries for Blue Waters.
http://jointlab-pc.ncsa.illinois.edu/events/workshop3/pdf/presentations/Gropp-
Update-on-Libraries.pdf
Presentation Material (not a paper, article)

• Global synchronization of dot
products are overlapped with
SpMV and Preconditioning

18

Implementation (Alg.4)
!C
!C +--------------+
!C | Delta= (p,s) |
!C +--------------+
!C===

DL0= 0.d0
!$omp parallel do private(i) reduction(+:DL0)

do i= 1, 3*N
DL0= DL0 + P(i)*S(i)

enddo
call MPI_Iallreduce (DL0, Delta, 1, MPI_DOUBLE_PRECISION, &
& MPI_SUM, MPI_COMM_WORLD, req1, ierr)

!C===

!C
!C +----------------+
!C | {q}= [Minv]{s} |
!C +----------------+
!C===

（前処理：省略）

!C===

call MPI_Wait (req1, sta1, ierr)

19

Pipelined CR (Conjugate Residuals)
Preconditioned Pipelined CR

• Global synchronization of dot
products are overlapped with
SpMV

20

Amount of Computations
DAXPY could very smaller than (sophisticated)

preconditioning

SpMV Precond. Dot
Prod. DAXPY

1 Original CG 1 1 2+1 3

2 Chronopoulos/
Gear 1 1 2+1 4

3 Pipelined CG 1 1 2+1 8

4 Grppp’s
Algorithm 1 1 2+1 5

Pipelined CR 1 1 2+1 6

+1 for
residual norm

21

• Communication/Synchronization
Avoiding/Reducing in Krylov Iterative
Solvers

• Pipelined CG: Background
• Pipelined CG: Results
• Communication-Computation

Overlapping
• Summary

22

GeoFEM/Cube
• Parallel FEM Code (& Benchmarks)
• 3D-Static-Elastic-Linear (Solid Mechanics)
• Performance of Parallel Precond. Iterative Solvers

– 3D Tri-linear Elements
– SPD matrices: CG solver
– Fortran90+MPI+OpenMP
– Distributed Data Structure
– Localized SGS Preconditioning

• Symmetric Gauss-Seidel, Block Jacobi
• Additive Schwartz Domain Decomposition

– Reordering by CM-RCM: RCM
– MPI，OpenMP，OpenMP/MPI Hybrid

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in
z-direction @ z=Zmax

(Ny-1) elements
Ny nodes

(Nx-1) elements
Nx nodes

(Nz-1) elements
Nz nodes

x

y

z

Uz=0 @ z=Zmin

Ux=0 @ x=Xmin

Uy=0 @ y=Ymin

Uniform Distributed Force in
z-direction @ z=Zmax

(Ny-1) elements
Ny nodes

(Nx-1) elements
Nx nodes

(Nz-1) elements
Nz nodes

Parallel FEM 3D-2 2323

Overlapped Additive Schwartz
Domain Decomposition Method
Stabilization of Localized Preconditioning: ASDD

Global Operation


Local Operation
 

Global Nesting Correction: Repeating -> Stable

 

1 2

rMz 

222111

11 , 




  rMzrMz

)(1111
11111111











  nnnn zMzMrMzz

)(1111
22222222











  nnnn zMzMrMzz

Reordering for avoiding data
dependency in IC/ILU computations

on each MPI process
Elements in “same color” are independent: to be
parallelized by OpenMP on each MPI process.

64 63 61 58 54 49 43 36

62 60 57 53 48 42 35 28

59 56 52 47 41 34 27 21

55 51 46 40 33 26 20 15

50 45 39 32 25 19 14 10

44 38 31 24 18 13 9 6

37 30 23 17 12 8 5 3

29 22 16 11 7 4 2 1

48 32

31 15

14 62

61 44

43 26

25 8

7 54

53 36

16 64

63 46

45 28

27 10

9 56

55 38

37 20

19 2

47 30

29 12

11 58

57 40

39 22

21 4

3 50

49 33

13 60

59 42

41 24

23 6

5 52

51 35

34 18

17 1

64 63 61 58 54 49 43 36

62 60 57 53 48 42 35 28

59 56 52 47 41 34 27 21

55 51 46 40 33 26 20 15

50 45 39 32 25 19 14 10

44 38 31 24 18 13 9 6

37 30 23 17 12 8 5 3

29 22 16 11 7 4 2 1

1 17 3 18 5 19 7 20

33 49 34 50 35 51 36 52

17 21 19 22 21 23 23 24

37 53 38 54 39 55 40 56

33 25 35 26 37 27 39 28

41 57 42 58 43 59 44 60

49 29 51 30 53 31 55 32

45 61 46 62 47 63 48 64

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

RCM
Reverse Cuthill-Mckee

MC (Color#=4)
Multicoloring

CM-RCM (Color#=4)
Cyclic MC + RCM

24

25

• 4 Types of Algorithms
– Alg.1 Original Preconditioned CG
– Alg.2 Chronopoulos/Gear
– Alg.3 Pipelined CG (MPI_Allreduce, MPI_Iallreduce,)
– Alg.4 Gropp’s asynchronous CG (MPI_Allreduce,

MPI_Iallreduce)
• Flat MPI，OpenMP/MPI Hybrid with Reordering
• Platform

– Integrated Supercomputer System for Data Analyses &
Scientific Simulations (Reedbush-U)

– Intel Broadwell-EP 18 cores x 2 sockets x 420 nodes
– Intel Fortran + Intel MPI
– 16 of 18 cores/socket, 384 nodes (= 768 sockets, 12,288

cores)

Results on Reedbush-U

26

• Strong Scaling
• Small

– 256×128×144
nodes (=4,718,592)

– 14,155,776 DOF
– at 384 nodes

(12,288 cores)
• 8×8×6＝384

nodes/core
• 1,152 DOF/core

• Medium
– 256×128×288

nodes (=9,437,184)
– 28,311,552自由度

Results: Number of Iterations

400

500

600

700

800

0 2048 4096 6144 8192 10240 12288

Ite
ra

tio
ns

CORE#

Small: Flat MPI
Small: Hybrid
Medium: Flat MPI
Medium: Hybrid

27

Results: Speed-Up: Small
Performance of 2 nodes of Flat MPI = 64.0

(4 sockets, 64 cores)

Flat MPI Hybrid

Alg.1 Original PCG
Alg.2 Chronopoulos/Gear
Alg.3 Pipelined CG
Alg.4 Gropp’s CG

0

2000

4000

6000

8000

10000

0 2048 4096 6144 8192 10240 12288

Sp
ee

d-
U

p

CORE#

Alg.1
Alg.2
Alg.3
Alg.4
Ideal

0

2000

4000

6000

8000

10000

0 2048 4096 6144 8192 10240 12288

Sp
ee

d-
U

p

CORE#

Alg.1
Alg.2
Alg.3
Alg.4
Ideal

0

2000

4000

6000

8000

10000

0 2048 4096 6144 8192 10240 12288

Sp
ee

d-
U

p

CORE#

Alg.1
Alg.2
Alg.3
Alg.4
Ideal

0

2000

4000

6000

8000

10000

0 2048 4096 6144 8192 10240 12288

Sp
ee

d-
U

p

CORE#

Alg.1
Alg.2
Alg.3
Alg.4
Ideal

28

Results: Speed-Up: Medium
Performance of 2 nodes of Flat MPI = 64.0

(4 sockets, 64 cores)

Flat MPI Hybrid

Alg.1 Original PCG
Alg.2 Chronopoulos/Gear
Alg.3 Pipelined CG
Alg.4 Gropp’s CG

29

Preliminary Results on IVB Cluster
96x80x64 (491,520) nodes, 1,474,560 DOF
Flat MPI using up to 64 nodes (1,280 cores)
Flat MPI worked well in this case
At 64 nodes, problem size per core is equal to that of “small” case

0

250

500

750

1000

1250

1500

0 160 320 480 640 800 960 1120 1280

Sp
ee

d-
U

p

CORE#

Alg.1 Alg.2
Alg.3 Alg.4
Ideal

80

100

120

140

160

0 160 320 480 640 800 960 1120 1280

R
el

at
iv

e
Pe

rf
or

an
ce

 (%
)

CORE#

Alg.2 Alg.3 Alg.4

Speed-Up (20-1,280 cores) Relative Performance to
Alg.1 (Original)

30

Allreduce vs. Iallreduce for Hybrid
Performance of 2 nodes of Flat MPI = 64.0

(4 sockets, 64 cores)
Alg.1 Original PCG
Alg.3 Pipelined CG
Alg.4 Gropp’s CG

0

2000

4000

6000

8000

10000

0 2048 4096 6144 8192 10240 12288

Sp
ee

d-
U

p

CORE#

Alg.1
Alg.3-IAR
Alg.4-IAR
Ideal
Alg.3-AR
Alg.4-AR

0

2000

4000

6000

8000

10000

0 2048 4096 6144 8192 10240 12288

Sp
ee

d-
U

p

CORE#

Alg.1
Alg.3-IAR
Alg.4-IAR
Ideal
Alg.3-AR
Alg.4-AR

Small Medium

IAR: MPI_Iallreduce
AR : MPI_Allreduce

31

Hybrid vs. Flat MPI for Alg.4

0.00

1.00

2.00

3.00

4.00

0 2048 4096 6144 8192 10240 12288

H
yb

rid
/F

la
t M

PI
 R

at
io

CORE#

Alg.4-Small
Alg.4-Medium

32

Results on 768 nodes (12,288 cores)
of Fujitsu FX10 (Oakleaf-FX)

MPI-3 is not optimized
FX100 has special HW for communication

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

Alg.1 Alg.2 Alg.3-IAR Alg.3-AR Alg.4-IAR Alg.4-AR

se
c.

Algorithms

Small: Flat MPI
Small: Hybrid

33

• Communication/Synchronization
Avoiding/Reducing in Krylov Iterative
Solvers

• Pipelined CG: Background
• Pipelined CG: Results
• Communication-Computation

Overlapping
• Summary

Comm.-Comp. Overlapping
CC-Overlapping 34

Internal Meshes

External (HALO) Meshes

Comm.-Comp. Overlapping
CC-Overlapping 35

Internal Meshes

External (HALO) Meshes

Internal Meshes on
Boundary’s

Mat-Vec operations (SpMV)
• Renumbering: ■⇒■
• Communications of info. on

external meshes
• Computation of ■ BEFORE

completion of comm. (comm.-
comp. overlapping)

• Synchronization of
communications

• Computation of ■

Comm.-Comp. Overlapping
CC-Overlapping 36

Internal Meshes

External (HALO) Meshes

Internal Meshes on
Boundary’s

call MPI_Isend
call MPI_Irecv

do i= 1, Ninn
(calculations)

enddo

call MPI_Waitall

do i= Ninn+1, Nall
(calculationas)

enddo

With Renumbering

Comm.-Comp. Overlapping
for SpMV

• No effects on SpMV (will be shown later)
• We need certain amount of communications
• Larger communications mean larger computations

– Ratio of communication overhead is small …
– Communication time itself is not so large

37

38

OpenMP: Loop Scheduling
!$omp parallel do schedule (kind, [chunk])
!$omp do schedule (kind, [chunk])

#pragma parallel for schedule (kind, [chunk])
#pragma for schedule (kind, [chunk])

Kind Description

static
Divide the loop into equal-sized chunks or as equal as possible in the case where the number of
loop iterations is not evenly divisible by the number of threads multiplied by the chunk size. By
default, chunk size is loop_count/number_of_threads.Set chunk to 1 to interleave the iterations.

dynamic

Use the internal work queue to give a chunk-sized block of loop iterations to each thread. When a
thread is finished, it retrieves the next block of loop iterations from the top of the work queue. By
default, the chunk size is 1. Be careful when using this scheduling type because of the extra
overhead involved.

guided
Similar to dynamic scheduling, but the chunk size starts off large and decreases to better handle
load imbalance between iterations. The optional chunk parameter specifies them minimum size
chunk to use. By default the chunk size is approximately loop_count/number_of_threads.

auto
When schedule (auto) is specified, the decision regarding scheduling is delegated to the compiler.
The programmer gives the compiler the freedom to choose any possible mapping of iterations to
threads in the team.

runtime
Uses the OMP_schedule environment variable to specify which one of the three loop-scheduling
types should be used. OMP_SCHEDULE is a string formatted exactly the same as would appear
on the parallel construct.

39

Strategy [Idomura et al. 2014]
• “dynamic”
• “!$omp master～!$omp end master”

!$omp parallel private (neib,j,k,i,X1,X2,X3,WVAL1,WVAL2,WVAL3)
!$omp& private (istart,inum,ii,ierr)

!$omp master Communication is done by the master thread (#0)
!C
!C– Send & Recv.
(…)

call MPI_WAITALL (2*NEIBPETOT, req1, sta1, ierr)
!$omp end master

!C The master thread can join computing of internal
!C-- Pure Inner Nodes nodes after the completion of communication

!$omp do schedule (dynamic,200) Chunk Size= 200
do j= 1, Ninn
(…)

enddo
!C
!C-- Boundary Nodes Computing for boundary nodes are by all threads

!$omp do default: !$omp do schedule (static)
do j= Ninn+1, N
(…)

enddo

!$omp end parallel

Idomura, Y. et al., Communication-overlap techniques for
improved strong scaling of gyrokinetic Eulerian code beyond 100k
cores on the K-computer, Int. J. HPC Appl. 28, 73-86, 2014

40

Block
Diagonal CG
sec./iteration

(1/2)

CC-Overlapping

(4.00)

(2.00)

0.00

2.00

4.00

6.00

8.00

10.00

Overlap 50 100 200 300 400 500

Sp
ee

d-
up

 (%
)

FX10-128-S RB-128-S KNSC-128-S

• Hybrid
• Small：1003 nodes/proc.
• Large：2003 nodes/proc.
• Overlap: Classical Method
• Number: Chunk Size
• Difference from the

Original Method

• Oakleaf-FX：FX10
• Reedbush-U：RB
• IVB Cluster：KNSC
• 128 MPI Processes (4.00)

(2.00)

0.00

2.00

4.00

6.00

8.00

10.00

Overlap 50 100 200 300 400 500

Sp
ee

d-
up

 (%
)

FX10-128-L RB-128-L KNSC-128-L

Small

Large

(4.00)

(2.00)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Overlap 50 100 200 300 400 500

Sp
ee

d-
up

 (%
)

RB-400-L RB-400-S

(4.00)

(2.00)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Overlap 50 100 200 300 400 500

Sp
ee

d-
up

 (%
)

FX10-4800-L FX10-4800-S

41

Block
Diagonal CG
sec./iteration

(2/2)

CC-Overlapping

• No effects by classical
overlapping

• Very effective on FX10
– There is a report

describing significant
effects of “assist cores
for communications” on
Fujitsu’s FX100

FX10: 4,800 nodes

RB： 400 nodes (800 sockets)

42

• Communication/Synchronization
Avoiding/Reducing in Krylov Iterative
Solvers

• Pipelined CG: Background
• Pipelined CG: Results
• Communication-Computation

Overlapping
• Summary

43

• Pipelined CG, Gropp’s CG
– Effect of hiding collective communication by MPI_Iallreduce

is significant, especially for strong scaling
– Alg.3 ~ Alg.4
– Future works

• Pipelined CR should be also evaluated
– Dr. Ghysels’s recommendation

• Application to Multigrid, HID (Hierarchical Interface Decompotision)
• Evaluation on FX100

• Loop Scheduling for OpenMP
– Effect is significant on FX10
– Detailed profiling needed
– Good target for AT (already done)

Summary

Next Stage …
44

Pure Internal Blocks

External (HALO) Meshes

Internal Blocks on
Boundary’s

• Combined Methods
– Pipelined CG
– ILU/IC
– Comm.-Comp. Overlapping
– Loop Scheduling

• We need separate
numbering by reordering for
internal and boundary
nodes
– More iterations needed
– Blocking could be a remedy

• Coalesced numbering is
more suitable than
sequential numbering.

45

Coalesced & Sequential Numbering

color=1 color=2 color=3 color=4 color=5Coloring
(5 colors)
+Ordering

color=1 color=2 color=3 color=4 color=5Coloring
(5 colors)
+Ordering

color=1 color=2 color=3 color=4 color=5

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

2 2 2 2 22 2 2 2 2 3 3 3 3 33 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 8 84 4 4 4 44 4 4 4 4 5 5 5 5 55 5 5 5 5 6 6 6 6 66 6 6 6 6 7 7 7 7 77 7 7 7 7 8 8 8 8 88 8 8 8 81 1 1 1 11 1 1 1 1

Initial Vector

各スレッド上で各スレッド上で
不連続なメモリ不連続なメモリ
アクセス（色のアクセス（色の
順に番号付け）順に番号付け）

スレッド内で連続に番号付けスレッド内で連続に番号付け

Initial Vector

color=1 color=2 color=3 color=4 color=5Coloring
(5 colors)
+Ordering

color=1 color=2 color=3 color=4 color=5

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Coalesced
Good for GPU
Continuous
numbering in
each color

Sequential
Good for CPU
Cache is well-
utilized
Continuous
numbering for
each thread

